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GENERALIZED FUZZY CLUSTERING METHOD

This paper presents a new hybrid fuzzy clusterieghod. In the proposed method, cluster prototypevalues
that minimize the introduced generalized cost finmctThe proposed method can be considered asexaation of
fuzzy c-means (FCM) method as well as the fuzzyeclian (FCMed) clustering method. The generalizatibthe
cluster cost function is made by applying thenorm. The values that minimize the proposed amsttion have been
chosen as the group prototypes. The weighted migitite special case of the group prototype, whehjnorm is the
L, (Euclidean) norm. The cluster prototypes are tlegghted meridians for thie; norm. Artificial data set is used to
demonstrate the performance of proposed method.

1. INTRODUCTION

Let us consider a set of obje@s{o0,, ... ,@}. The object set consists of unlabeled data/aleels
are not assigned to objects. The goal of clustesing find existing subsets in tkeset. Objects from one
group have a high degree of similarity, while theywe a high degree of dissimilarity with objectsnir
other groups. Subsets that are found among obpédle O set are calledlusters[4,10]. In most cases,

each gobject from theD object set is represented by an x vector in tHerensional space, i.ex[0°.
The setX={xy, ... xa} is called the object data representatiorOofin such case, th& component of the
K" feature vectow gives a measure of th8 feature (e.g. length of flower petal, age, weigiftihe K"
objectoy.

One of the most popular clustering method is thezyuc-means (FCM) method. In this method,
cluster prototypes are computed as the fuzzy m¢a@k However, one of the most important
inconvenience of the FCM method is its sensitiviby outliers i.e. there are feature vectors which
component (or components) have quite differentevalompared to other feature vectors. There are many
modifications for the limitation of the outliersfimence. In the first modification, tHe, norm is replaced
by the L; norm and by the generalizeld, norm [8]. Another approach has been proposed by
Krishnapuram and Keller [12,13]. This clusteringpagach is based on possibilistic theory instead on
fuzzy theory. Another modification has been propldsg Kersten. In this method the norm is replaced
by L; norm, and the cluster prototypes are computedzzy/fmedians [11].

The use of heavy tailed distribution to model timpulsive noise gives better results than the use of
Gaussian distribution [5,6,7,9]. One of the heailet distribution is the Cauchy distribution, wlehe
location parameter is called (sample) myriad [lhe Tfuzzy myriads have been used as the cluster
prototypes in the fuzzy c-myriads (FCMyr) clustgrimethod [15]. Another example of the heavy tailed
distribution is the Meridian distribution proposiey Aysal and Berner [3]. The location parametertfa
Meridian distribution is called (sample) meridiam.the adaptive fuzzy c-meridians (AFCMer) clusigri
method, the cluster prototypes were computed agyfuzeridians [16]. The myriad is the maximum
likelihood estimator of the location parameter tbe Cauchy distribution, so is the meridian for the
Meridian distribution. The form of cost functionrfsample myriad is very similar to the sample marid
cost function. Theé., norm is used for the myriad cost function, wherethe meridian cost function, the
L1 norm is used.

In this paper, the generalized cost function is@néed. In the proposed cost function, lth@orm
is used. Assuming=2 the generalized cost function becomes the myraed function, while fop=1 the
proposed cost function becomes the meridian costifon. Such a generalization is used to deteritiiae
cluster prototypes in the proposed clustering éigaor.
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The paper is organized as follows. Section 2 gihesgeneralized cost function. The proposed
clustering algorithm is introduced in Section 3d&gection 4 contains numerical examples. The last
section contains some conclusions and ideas farduesearch.

2. GENERALIZED COST FUNCTION

2.1.FUZZY MYRIAD

The probability density function (PDF) of the Cawudfistribution is described in the following

way.
K 1
f(x;0)=| —

where: © is the location parameter, akds the scaling factoiKc0).
For the given set oN independent and identically distributed (i.i.dangples each obeying the

Cauchy distribution with the common scale parami€fehe sample myria@i)K Is a value that minimizes
the cost functiorV,, defined as follows [2]:

~

Oy :argrgmig Y, (x;0)

= myriad(xk [ O) ’ @)

where W, :zlillog[K%(xk—@)z]. By assigning non-negative weights to the inpunas, the

weighted myriadC:)K is derived as a generalization of the sample rdyreor theN i.i.d. observations

{x .}, and the weightfu, } _,, the weighted myriad can be computed from thevdihg expression:

~

O, :argrgDiEpZN:Iog[KZ + uk(xk —@)2]
k=1 :

©)
= myriad(uk * X oy (9)

The value of weighted myriad depends on the ddtx,sthe assigned weights and the parameté,
called a linearity parameter. Two interesting cas@y occur. First, when th€ value tends to infinity
(i.,e. K - =), the value of weighted myriad converges withwleeghted mean, that is:

N
.~ z . U X
lim 0, =25——, (4)
k:luk
where: 9, = myriad(ukxk % K).
This property is called myriad linear property [1,8econd interesting case, called modal property,
occurs when the value & parameter tends to zero (i.K. - 0). In this case, the value of weighted
myriad is always equal to one of most frequent @slim the input data set, i.e.:

~ N
®, =argmin
0 g ij]E

X =X, (5)

k=1, X #X;

where: éo =li éK
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and = is a set that contains the most frequent dathannput data set. The value(:)K Is defined in the
same way as in the linear property.

2.2.WEIGHTED MERIDIAN

The random variable formed as the ratio of two pe@lent zero-mean Laplacian distributed
random variables is referred to as the Meridiartridistion [3]. The PDF form of the Meridian

distribution is given by:
o)
f(xo
{2 ©

where:d is the scaling factod(> 0).
For the given set of i.i.d. sampl{:zqﬂ},:':l each obeying the Meridian distribution with thergoon scale
parameted, the sample meridian is given by [3]:

R N
B, =argmin® logd+x, - A
k=1

=argming(x; )
= meridiar(xk s 5)

: (7)

where g, is the sample meridian cost function. Parametsrcalled the medianity parameter.

The sample meridian can be generalized to the wesgimeridian by assigning non-negative weights to
the input samples. So, the weighted meridian ismivy:

A~

N
B =argrpmig\2|09[5 +ux = 4]

k=1
:argr/gDiDn o (x,u; B) _ (8)
= meridiar{u, * x, [\; 3)

The behavior of the weighted meridian significandgpends on the value of its medianity
parameted. Two interesting cases may occur. The first casgurs when the value of the medianity
parameter tend to infinity (i.ed — o), the weighted meridian is equivalent to the weghmedian [3].
For the given data set dfi.i.d. samplesq, ... ,)x and assigned weights, ... ,W, the following equation
holds true:

!5'[?0'85 =lim merldlar(uk X heeas O )
—med|ar(uk Xy ||<-1) |

This property is called the median property. Theosd interesting case, called the modal property,
occurs when the medianity parameidends to zero (i.ed — 0). In this case, the weighted meridig
is equal to the most repeated values in the inata slet. Furthermore:

(9)

1 N
I|m,85 argmln{ |_| - j] (10)

X0X U k=1, X #X;
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where:X; is the set of the frequently repeated values,rasdhe number of occurrences of a member of
Xi in the sample set.

2.3. GENERALIZED COST FUNCTION

Comparing the properties of the weighted myriad dasction and weighted meridian cost function
common features can be found. One of them is thawber of the both function when the parameter
and thed parameter tend to zero. Then, for the same datX sed the same weightd, the value of
weighted myriad is equal to the value of the wesghtmeridian. Another common feature of both
functions is their similar form, but the weightedynad cost function uses thie, norm, while the
weighted meridian cost function uses thenorm.

Let theL, norm be defined as follows:

4,3 ay

wherez is ans-dimensional real vector (i.e0°).
Applying thelL, norm to the weighted myriad cost function (3) @igihted meridian cost function
(8), the generalized cost function can be expresstte following form:

N
X2 (v) = logly+u -] 12)
k=1

where:

. is theL, norm to thep power, and parametgrcorresponds to medianity parameddor p=1,

and corresponds to linearity paramefefor p=2. It should be mentioned, that for1 the yparameter is

equal to medianity parameteéy but for p=2 parametery is equal to the square root of the linearity
parameteK.

For the given data s¢k,},, and the assigned weighls, },,, let the, be the value minimizing
the cost function (12), i.e.:

v, :arngnDiDn)(ﬁp)(v)

N
= argmin logly +u,x, -v],| -
k=1

Properties of they, are presented in Table 1. The functigj”(v) can be regarded as a
generalized cost function. Fpr1 a weighted meridian is a s special casg ofand forp=2 the weighted
myriad is a special case 0f .

Table 1. Properties dfy estimator.

4 p=1 p=2
y-0 most repeated value in the input data set
O<y< [l ﬁy = meridiar{uk * X ”(\1:1; y) |’)y :myriad(uk * X, ||L\‘:1;\/J_/)
y—0 v,= mediar(uk * X, |sz1) v,= mear(uk * X, |E‘:1)
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Assuming without loss of generality that the wesgghte in the unit interval (i.eu, D[O,l] where
1< k < N), the weights can be interpreted as membershipedsg Then, a weighted myria\fﬂK or a

weighted meridian/;"(, can be interpreted as a fuzzy myriad or fuzzy dian. In the rest paper, the

weights will be treated as a membership degreegtandeighted myriad and weighted meridian will be
interpreted as fuzzy myriad and fuzzy meridian.oAkhe ﬁy value will be interpreted as a fuzzy value.

3. GENERALIZED CLUSTERING METHOD

Let us consider a clustering category in whichipans of data set are built on the basis of some
performance index, known also as an objective fandtL,2,16]. The minimization of a certain objeeti
function can be considered as an optimization amirdeading to suboptimal configuration of the
clusters. The main design challenge is formulaingobjective function that is capable of reflectthg
nature of the problem so that its minimization sdsea meaningful structure in the data set.

The proposed method is an objective functional dase fuzzy c-partitions of the finite data set
[4,14]. The suggested objective function can bexdension of the classical functional of within-gpo
sum of an absolute error. The objective functiorthef chosen method can be described in the follgwin
way:

19UV)= 3> Slogy+ullx ) -v )] a4

C
i=1 k=1 I=1

where:c is the number of cluster® is the number of the data sampless the number of features
describing the clustered objects. Tpparameter controls the behavior of cluster praesyu, JU is

the membership degree of th& sample to thé™ cluster, theU is the fuzzy partition matrixxc(l)
represents thE" feature of th&" input data from the data set, amds the fuzzyfing exponent called the
fuzzyfier.

The optimization objective functia#®,, is completed with respect to the partition matiand the
prototypes of the cluster§. By minimizing (14) using Lagrangian multiplierthe following new
membershipix update equation can be derived:

(15)

For the case, wherlg, —vi||p =0, thenug=1 anduy=0 forjO{1...¢-{i}. For the fixed number of clusters

¢ and the partition matrik) as well as for the exponemt the prototype values minimizing (14) are the
values described as follows:

v (1)=argmin> logly +ug 1) -v 0, | o

where:i is the cluster number<i < c andl is the component (feature) numbes ll< s.
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3.1. CLUSTERING DATA WITH THE GENERALIZED CLUSTERING MEHROD

The proposed clustering algorithm can be descraseillows:

1. For the given data set={x;...xn} wherex, O P, fix the number of clusters}{2,... , N,
the fuzzyfing exponentnd[1, [I) and assume the tolerance lirgitinitialize randomly the
parition matrixU, fix the value ofy; and set=0.

Calculate the prototype valu¥sfor each feature of based on (16),
Update the partition matrid using (15),

4. if HU('*” - U")H<£then STOP the clustering, otherwlsé+1 and go to (2).

w N

4. NUMERICAL EXPERIMENTS

In the numerical experiment the fuzzy exponent lbesn fixed tom=2, and the tolerance limit
£&10°. The values of thgzparameter have been taken from theyslét{lOO,lO,],O.]}. For a computed set
of prototype vector¥ the clustering accuracy has been measured asdberitus norm distance between
the true centerg and the prototype vectors. The matkixs created a—V|_, where|A|_:

o, =(35]

Table 2. The Frobenius norm between true centatpestotype vectors obtained for different number
of disturbing samples and different norms.

p=1 p=2

N; =100 =10 =1 )~0.1 =100 =10 =1 )~0.1
0 0 0 0 0 0.03 0.03 0.03 0.03
10 0 0 0 0 0.07 0.07 0.06 0.06
20 0 0 0 0 0.1 0.1 0.1 0.09
30 0 0 0 0 0.16 0.16 0.15 0.11
40 0.05 0.05 0.05 0.05 0.18 0.18 0.17 0.14
50 0.14 0.14 0.15 0.12 0.32 0.32 0.31 0.24
75 0.08 0.1 0.07 0.07 0.22 0.22 0.22 0.17
100 0.05 0.05 0.05 0.05 0.23 0.23 0.22 0.16
200 0.35 0.17 0.2 0.15 0.34 0.34 0.34 0.3

The purpose of this experiment is to investigat dbility to detect groups in data set. For this
purpose, various number of disturbing samples wdded to data set with two well-separated groups in
2D space. The center of first group is locateda P.3] and the center of the second group is located at
[0.8 0.3]. The disturbing samples are realizations of eveligyributed random variable on [0X]( 1]
intervals. The Figure 1 shows an example of coediplata set, where the “two cluster” data are gdott
as &) and the corruption samples are plotted «@sTfile obtained results are presented in the Table 2
where the left column includes the number of distug samples described b.

It can be noticed, that the significant deterianatof clustering results occurs =200 disturbing
samples. For the number of disturbing samples Idiem 40 and the; norm , the noise samples do not
have an influence on the clustering results. Fet.tmorm, the number of disturbing samples lower than
20 do not have an influence on the obtained restsen the number of disturbing samples is incrase
clustering results are wore. Still, they are acaelat, especially for thie; norm.
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Fig.1.Hidden groupof data with 100 corruption samples.

5. CONCLUSIONS

In many cases, the real data are corrupted by rasigeoutliers. Hence, the clustering methods
should be robust for noise and outliers. In thipgoathe generalized clustering method has been
presented. The wordeneralizedstands for different cluster estimation which ispendent on two
parameters. The proposed method can be treated@sesalization of two clustering method: the fuzzy
c-means method and fuzzy c-medians method. Themexs generalization of the cost function allows
the application of thé, norm, where ¥ p<2 orp<1. In such cases, it is difficult to interpret and
identify the valuev. The current work solves the local minima problamd the performance of the
cluster centers estimation for large data set.
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