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GENERALIZED FUZZY CLUSTERING METHOD 

This paper presents a new hybrid fuzzy clustering method. In the proposed method, cluster prototypes are values 
that minimize the introduced generalized cost function. The proposed method can be considered as a generalization of 
fuzzy c-means (FCM) method as well as the fuzzy c-median (FCMed) clustering method. The generalization of the 
cluster cost function is made by applying the Lp norm. The values that minimize the proposed cost function have been 
chosen as the group prototypes. The weighted myriad is the special case of the group prototype, when the Lp norm is the 
L2 (Euclidean) norm. The cluster prototypes are the weighted meridians for the L1 norm. Artificial data set is used to 
demonstrate the performance of proposed method. 

1.  INTRODUCTION 

Let us consider a set of objects O={ o1, … ,oN}. The object set consists of unlabeled data, i.e. labels 
are not assigned to objects. The goal of clustering is to find existing subsets in the O set. Objects from one 
group have a high degree of similarity, while they have a high degree of dissimilarity with objects from 
other groups. Subsets that are found among objects of the O set are called clusters [4,10]. In most cases, 
each oi object from the O object set is represented by an x vector in the s-dimensional space, i.e. sx ℜ∈ . 
The set X={ x1, … ,xN} is called the object data representation of O. In such case, the l th component of the 
kth feature vector xk gives a measure of the l th feature (e.g. length of flower petal, age, weight) of the kth 
object ok. 

One of the most popular clustering method is the fuzzy c-means (FCM) method. In this method, 
cluster prototypes are computed as the fuzzy means [10]. However, one of the most important 
inconvenience of the FCM method is its sensitivity to outliers i.e. there are feature vectors which 
component (or components) have quite different value compared to other feature vectors. There are many 
modifications for the limitation of the outliers influence. In the first modification, the L2 norm is replaced 
by the L1 norm and by the generalized Lp norm [8]. Another approach has been proposed by 
Krishnapuram and Keller [12,13]. This clustering approach is based on possibilistic theory instead on 
fuzzy theory. Another modification has been proposed by Kersten. In this method the L2 norm is replaced 
by L1 norm, and the cluster prototypes are computed as fuzzy medians [11]. 

The use of heavy tailed distribution to model the impulsive noise gives better results than the use of 
Gaussian distribution [5,6,7,9]. One of the heavy tailed distribution is the Cauchy distribution, where the 
location parameter is called (sample) myriad [1]. The fuzzy myriads have been used as the cluster 
prototypes in the fuzzy c-myriads (FCMyr) clustering method [15]. Another example of the heavy tailed 
distribution is the Meridian distribution proposed by Aysal and Berner [3]. The location parameter for the 
Meridian distribution is called (sample) meridian. In the adaptive fuzzy c-meridians (AFCMer) clustering 
method, the cluster prototypes were computed as fuzzy meridians [16]. The myriad is the maximum 
likelihood estimator of the location parameter for the Cauchy distribution, so is the meridian for the 
Meridian distribution. The form of cost function for sample myriad is very similar to the sample meridian 
cost function. The L2 norm is used for the myriad cost function, where for the meridian cost function, the 
L1 norm is used. 

In this paper, the generalized cost function is presented. In the proposed cost function, the Lp norm 
is used. Assuming p=2 the generalized cost function becomes the myriad cost function, while for p=1 the 
proposed cost function becomes the meridian cost function. Such a generalization is used to determine the 
cluster prototypes in the proposed clustering algorithm. 
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The paper is organized as follows. Section 2 gives the generalized cost function. The proposed 
clustering algorithm is introduced in Section 3, and Section 4 contains numerical examples. The last 
section contains some conclusions and ideas for future research. 

2. GENERALIZED COST FUNCTION 

2.1. FUZZY MYRIAD 

The probability density function (PDF) of the Cauchy distribution is described in the following 
way: 
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where: Θ  is the location parameter, and K is the scaling factor (K>0).  
For the given set of N independent and identically distributed (i.i.d.) samples each obeying the 

Cauchy distribution with the common scale parameter K, the sample myriad KΘ̂  is a value that minimizes 

the cost function KΨ  defined as follows [2]: 

 
( )

( )Θ=

ΘΨ=Θ

=

ℜ∈Θ

;|

;minargˆ

1
N
kk

KK

xmyriad

x
 , (2) 

where ( )[ ]∑ =
Θ−+=Ψ N

k kK xK
1

22log . By assigning non-negative weights to the input samples, the 

weighted myriad KΘ̂  is derived as a generalization of the sample myriad. For the N i.i.d. observations 

{ }N

kkx 1=  and the weights { }N

kku 1= , the weighted myriad can be computed from the following expression: 
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The value of weighted myriad depends on the data set x, the assigned weights u and the parameter K, 
called a linearity parameter. Two interesting cases may occur. First, when the K value tends to infinity 
(i.e. ∞→K ), the value of weighted myriad converges with the weighted mean, that is: 
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This property is called myriad linear property [1,2]. Second interesting case, called modal property, 
occurs when the value of K parameter tends to zero (i.e. 0→K ). In this case, the value of weighted 
myriad is always equal to one of most frequent values in the input data set, i.e.: 
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and Ξ  is a set that contains the most frequent data in the input data set x. The value KΘ̂  is defined in the 
same way as in the linear property. 

2.2. WEIGHTED MERIDIAN 

The random variable formed as the ratio of two independent zero-mean Laplacian distributed 
random variables is referred to as the Meridian distribution [3]. The PDF form of the Meridian 
distribution is given by: 
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where: δ is the scaling factor (δ > 0). 

For the given set of i.i.d. samples { }N

kkx 1=  each obeying the Meridian distribution with the common scale 

parameter δ, the sample meridian is given by [3]: 
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where δφ  is the sample meridian cost function. Parameter δ is called the medianity parameter. 

The sample meridian can be generalized to the weighted meridian by assigning non-negative weights to 
the input samples. So, the weighted meridian is given by: 
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The behavior of the weighted meridian significantly depends on the value of its medianity 
parameter δ. Two interesting cases may occur. The first case occurs when the value of the medianity 
parameter tend to infinity (i.e. ∞→δ ), the weighted meridian is equivalent to the weighted median [3]. 
For the given data set of N i.i.d. samples x1, … ,xN and assigned weights u1, … ,uN, the following equation 
holds true: 
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This property is called the median property. The second interesting case, called the modal property, 

occurs when the medianity parameter δ tends to zero (i.e. 0→δ ). In this case, the weighted meridian δβ̂  

is equal to the most repeated values in the input data set. Furthermore: 
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where: Xi is the set of the frequently repeated values, and r is the number of occurrences of a member of 
Xi in the sample set. 

2.3. GENERALIZED COST FUNCTION 

Comparing the properties of the weighted myriad cost function and weighted meridian cost function 
common features can be found. One of them is the behavior of the both function when the K parameter 
and the δ parameter tend to zero. Then, for the same data set X and the same weights U, the value of 
weighted myriad is equal to the value of the weighted meridian. Another common feature of both 
functions is their similar form, but the weighted myriad cost function uses the L2 norm, while the 
weighted meridian cost function uses the L1 norm. 
Let the Lp norm be defined as follows: 
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where z is an s-dimensional real vector (i.e. sℜ∈z ).  
Applying the Lp norm to the weighted myriad cost function (3) or weighted meridian cost function 

(8), the generalized cost function can be expressed in the following form: 

 ( ) [ ]∑
=

−+=
N

k
pkk

p xu
1

)( log νγνχγ  (12) 

where: 
p

•  is the Lp norm to the p power, and parameter γ corresponds to medianity parameter δ for p=1, 

and corresponds to linearity parameter K for p=2. It should be mentioned, that for p=1 the γ parameter is 
equal to medianity parameter δ, but for p=2 parameter γ is equal to the square root of the linearity 
parameter K. 

For the given data set { }N

kkx 1=  and the assigned weights { }N

kku 1= , let the γν̂  be the value minimizing 

the cost function (12), i.e.: 
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Properties of the γν̂  are presented in Table 1. The function ( )νχγ
)( p  can be regarded as a 

generalized cost function. For p=1 a weighted meridian is a s special case of γν̂ , and for p=2 the weighted 

myriad is a special case of γν̂ . 

Table 1. Properties of γν̂  estimator. 

γ p=1 p=2 
γ→0 most repeated value in the input data set 
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Assuming without loss of generality that the weights are in the unit interval (i.e. [ ]1,0∈ku  where 

1 ≤ k ≤ N), the weights can be interpreted as membership degrees. Then, a weighted myriad KΘ̂  or a 

weighted meridian δβ̂  can be interpreted as a fuzzy myriad or fuzzy meridian. In the rest paper, the 

weights will be treated as a membership degrees and the weighted myriad and weighted meridian will be 
interpreted as fuzzy myriad and fuzzy meridian. Also, the γν̂  value will be interpreted as a fuzzy value. 

3. GENERALIZED CLUSTERING METHOD 

Let us consider a clustering category in which partitions of data set are built on the basis of some 
performance index, known also as an objective function [1,2,16]. The minimization of a certain objective 
function can be considered as an optimization approach leading to suboptimal configuration of the 
clusters. The main design challenge is formulating an objective function that is capable of reflecting the 
nature of the problem so that its minimization reveals a meaningful structure in the data set. 

The proposed method is an objective functional based on fuzzy c-partitions of the finite data set 
[4,14]. The suggested objective function can be an extension of the classical functional of within-group 
sum of an absolute error. The objective function of the chosen method can be described in the following 
way: 
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where: c is the number of clusters, N is the number of the data samples, s is the number of features 
describing the clustered objects. The γ parameter controls the behavior of cluster prototypes, U∈iku  is 

the membership degree of the kth sample to the i th cluster, the U is the fuzzy partition matrix, xk(l) 
represents the l th feature of the kth input data from the data set, and m is the fuzzyfing exponent called the 
fuzzyfier. 

The optimization objective function J(p)
m is completed with respect to the partition matrix U and the 

prototypes of the clusters V. By minimizing (14) using Lagrangian multipliers, the following new 
membership uik update equation can be derived: 
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For the case, where 0=−
pik vx , then uik=1 and ujk=0 for j∈{1…c} -{ i}. For the fixed number of clusters 

c and the partition matrix U as well as for the exponent m, the prototype values minimizing (14) are the 
values described as follows: 
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where: i is the cluster number 1 ≤ i ≤ c and l is the component (feature) number 1 ≤ l ≤ s. 



MEDICAL DATA ANALYSIS 

 74 

3.1. CLUSTERING DATA WITH THE GENERALIZED CLUSTERING METHOD 

The proposed clustering algorithm can be described as follows: 
1. For the given data set X={ x1…xN} where xk ∈ ℜs, fix the number of clusters c∈{2 ,… , N}, 

the fuzzyfing exponent m∈[1, ∝) and assume the tolerance limit ε. Initialize randomly the 
parition matrix U, fix the value of γ, and set l=0. 

2. Calculate the prototype values V for each feature of vi based on (16), 
3. Update the partition matrix U using (15), 

4. if ε<−+ )()1( ll UU then STOP the clustering, otherwise l=l +1 and go to (2). 

4. NUMERICAL EXPERIMENTS 

In the numerical experiment the fuzzy exponent has been fixed to m=2, and the tolerance limit 
ε=10-5. The values of the γ parameter have been taken from the set { }1.0,1,10,100∈γ . For a computed set 
of prototype vectors V the clustering accuracy has been measured as the Frobenius norm distance between 
the true centers µµµµ and the prototype vectors. The matrix A is created as 

F
V−µ , where 

F
A : 
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Table 2. The Frobenius norm between true centers and prototype vectors obtained for different number  

of disturbing samples and different norms. 

p=1 p=2 
Ni γ=100 γ=10 γ=1 γ=0.1 γ=100 γ=10 γ=1 γ=0.1 

0 0 0 0 0 0.03 0.03 0.03 0.03 
10 0 0 0 0 0.07 0.07 0.06 0.06 
20 0 0 0 0 0.1 0.1 0.1 0.09 
30 0 0 0 0 0.16 0.16 0.15 0.11 
40 0.05 0.05 0.05 0.05 0.18 0.18 0.17 0.14 
50 0.14 0.14 0.15 0.12 0.32 0.32 0.31 0.24 
75 0.08 0.1 0.07 0.07 0.22 0.22 0.22 0.17 
100 0.05 0.05 0.05 0.05 0.23 0.23 0.22 0.16 
200 0.35 0.17 0.2 0.15 0.34 0.34 0.34 0.3 
 
The purpose of this experiment is to investigate the ability to detect groups in data set. For this 

purpose, various number of disturbing samples were added to data set with two well-separated groups in 
2D space. The center of first group is located at [0.3 0.3]T and the center of the second group is located at 
[0.8 0.3]T. The disturbing samples are realizations of evenly distributed random variable on [0 1]×[0 1] 
intervals. The Figure 1 shows an example of corrupted data set, where the “two cluster” data are plotted 
as (×) and the corruption samples are plotted as (•).The obtained results are presented in the Table 2, 
where the left column includes the number of disturbing samples described by Ni. 

It can be noticed, that the significant deterioration of clustering results occurs for Ni=200 disturbing 
samples. For the number of disturbing samples lower than 40 and the L1 norm , the noise samples do not 
have an influence on the clustering results. For the L2 norm, the number of disturbing samples lower than 
20 do not have an influence on the obtained results. When the number of disturbing samples is increased, 
clustering results are wore. Still, they are acceptable, especially for the L1 norm. 
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Fig.1. Hidden groups of data with 100 corruption samples. 

5. CONCLUSIONS 

In many cases, the real data are corrupted by noise and outliers. Hence, the clustering methods 
should be robust for noise and outliers. In this paper the generalized clustering method has been 
presented. The word generalized stands for different cluster estimation which is dependent on two 
parameters. The proposed method can be treated as a generalization of two clustering method: the fuzzy 
c-means method and fuzzy c-medians method. The presented generalization of the cost function allows 
the application of the Lp norm, where 1 ≤ p ≤ 2 or p ≤ 1. In such cases, it is difficult to interpret and 
identify the value ν̂ . The current work solves the local minima problem and the performance of the 
cluster centers estimation for large data set. 
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