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INDEPENDENT COMPONENT ANALYSISAND ADAPTIVE FILTERING AS
SUCCESSFUL TOOLSFOR AN IMPROVEMENT OF NORMOGASTRIC
RHYTHM EXTRACTION IN ELECTROGASTROGRAPHIC SIGNALS

The aim of this study was to investigate the padksitof combining two methods: Independent Compaine
Analysis (ICA) and Adaptive Signal Enhancement foe improvement of normogastric rhythm extractiosant
multichannel recording of electrogastrographic algfEGG). Unfortunately the electrogastrograng teanscutaneous
measurement of gastric electrical activity, does euntain pure signal but usually is a sort of migt from both
electrical activity of stomach as well as otheramg surrounding it and random noise. In order tebethe diagnostic
power of multichannel recording of EGG, which caiayide deeper understanding of gastric disorders,riecessity to
extract gastric slow wave in each channel. Ondefparameters, which are analyzed and require pregestration is
so called normogastric rhythm. According to therhture, the normogastric rhythm should cover atod®% of
rhythmic behavior of signal for a healthy man. Rmoextraction of basic 3-cpm normogastric rhythnedch channel is
a subject of this paper. Independent Componenty&igls applied for extracting the reference sigioal adaptive
filtering what next result in obtaining less contaated signal in each channel. Analysis has beefonpe for two
postprandial phases with five minutes break betwkem. In both mention cases proposed proceduess giypromising
results.

1. INTRODUCTION

The electrogastrogram (EGG) is a gastric myoelsdtractivity noninvasively recorded by the
surface electrodes placed on the abdominal skinTli¢ stomach is a sac-shaped organ with two qutlet
the upper one called cardia and the bottom naméatysy From the anatomical point of view it is
possible to distinguish three regions in the stdmé&andus, corpus (body) and antrum. As in the thear
from a pacemaker region of stomach, situated orgtbater curvature, between the fundus and corpus.
spontaneous electrical depolarization and rep@torz occurs and generates the myoelectrical eiarita
Pacesetter potentials propagate with velocity greatcumferentially than distally causes developed
excitation which is the electrical basis of gastperistaltic contraction and the main mechanism of
emptying the stomach from its contents [10]. Gelhgrenere are two types of electrical activitytumica
muscularis of stomach: electrical control actiiBCA) and electrical response activity (ERA), fhist
one is called slow wave the second one spike gatelrt 1911, Santiago Ramon y Cajal pointed owt an
described a special network of cells in gastroiimaktissues and named them Interstitial Cell ajaC
(ICC). ICC cells are different from both neuronsdamooth muscles cells and they are capable of
producing spontaneously ion currents for pacemduaction, setting myoelectrical rhythmicity of
stomach and the other areas of gastrointestinal[t/4. As smooth muscle cells lack the abilitystdw
wave generation, active propagation is performewuih the ICC network. Slow wave decay in
amplitude and disappear very fast in the regiortsouit ICC [14].

Gastric peristaltic contraction is the basis forpging solids from stomach because it causes
pressure wave which pushes the contents of theastortoward pyloric sphincter. Delayed gastric
emptying causes various gastric disorders, sucnasxample bloating, vomiting or early satiety. The
slow waves do not directly generate contractionthefstomach muscles, these are spike potentiais th
are responsible for muscularis contraction, bUER# can only appear at the top of depolarizatiothef
slow wave, the slow wave is the basic mechanisnchvboth integrate and control stomach wall motility
Even though the dominant pacemaker of stomachuatsd in the corpus, each region of stomach below
has pacemaker activity, too. The corpus pacemadmnirchtes because it generates a slow wave at the
greatest 3 cycle per minute (cpm) frequency .85z and there is a time for generated wave to
propagate and initiate slow wave in the more disitals before they are able to produce they ownteve
Motility disorders can be an effect of breakdowrthe gradient frequency [10]. When one of the waves
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disappears in distal atrium another one originatése pacemaker area in the corpus and migraves tb
the atrium every 20 seconds. EGG recording reflecbasic 3 cpm rhythm of slow wave [2]. The ERA is
also possible to observe but only on serosal orasalcrecording using the electrodes invasively
implanted in the suitable layer of tunica muscslarf stomach wall. As far as other biological signa
there are several reasons leading that EGG inclagag from normal physiological rhythm 2 - 4 cpm
(0.033 - 0.066 Hz) some additional pathologicalihys covering frequencies from 0.5 cpm up to 9 cpm
(0.008 - 0.15 Hz). Therefore, due to the leadinghim in the EGG signal it is possible to distinduis
bradygastric rhnythm 0.5 — 2 cpm (0.008 — 0.033 mtrmogastric rhythm 2 — 4 cpm (0.033 — 0.066 Hz)
and finally tachygastric rhythm 4 —9 cpm (0.066.15 Hz) [13].

2. PROCEDURE OF EGG SIGNAL REGISTRATION

EGG signal registration has been performed withdsied four channel biosignal amplifier within
the range of 0.9 - 9 cpm (0.015 - 0.15 Hz) and abdal electrodes placement [Fig. 1]. A group of 6
healthy volunteers have been examined in ordestimate the total amount of normogastric rhythm in
EGG signal.

Fig. 1. Electrodes placement for 4-channel EGGstegion [12], [3].

Analysis has been performed for 12 registratiod-ohannel EGG signals. Two postprandial registnatio
for each patient has been taken under considergiltase | and phase Il. Phase | included 33 minutes
(8008 samples) registration of EGG signal (sampliequency 4 Hz), directly after feeding with 400 m
of fruit yogurt containing 370 kcal, phase Il comed the next 33 minutes of registration after Butes
break. For each person, each phase and each cludr®B(G registration the percentage of normogastric
rhythm has been analyzed before and after adafittvation. It is considered, that for the healthy
subjects the normogastric rhythm (2 - 4 cpm) cowster 70% of the whole periodicity of EGG signal
[13].

X, S, |- PSD(S),)
EGG = X, j Ic4 S, |[>PSD(S,) F=005H: F=5,
X, H S, |- PSD(S,) ie{1,23,4}
X4 N S4 —)PSD(S4) F reference signal
DCT(F,)=[DCT(f;).DCT(f ). DCT(f; )] AN=8
) Adaptivereference filtration

L » Cleaned4 channel EGG signal
Fig. 2. Scheme of examination procedure for impnoset of normogastric rhythm in EGG signal.

In the first step of examination procedure the petelent component analysis (ICA) has been
applied to 4-channel EGG decomposition, next thegiral of power spectral density function (PSD) in
the limits concerning frequency of particular earlilefined brady, normo and tachygastric rhythnss ha
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been calculated for each obtained source signa.sblirce signal with the biggest normogastric nmyth
contribution has been chosen as the referencel mredaptive filtration. The adaptive filteringib been
performed in the transform domain by means of tiserdte cosine transform (DCT) [11] as a basic
preprocessing stage improving quite complicatechadigquality. Additionally, the percentage of
normogastric rhythm in the reference signal has laéso analyzed.

3. REVIEW OF APPLIED METHODS FOR EGG ANALYSIS

3.1.INDEPENDENT COMPONENT ANALYSIS (ICA)

The ICA method has been known as an effective tdolgyg for blind source separation (BSS) [9],
[4], [6], [16]. Multichannel EGG recording is a saf mixture resulting from the gastric myoelecatic
activity of stomach, the electrical activity of ethsurrounding organs and various kind of noise or
artifacts. It is possible to assume thmabbserved EGG signabs(t), %(t), Xs(t),...,x(t) recorded by
multichannel electrogastrography are linear contibna of n statistically independent source
componentss (t), $(t), s(t),...,(t) such as electrical activity of stomach, heartpirasion or random
noise ect.

Let's
X =[X, (1), X, (1), X5(1),..., X, ()] (1)
and
S=[S(1),S,1),S(),....S, O (2)
then
X =A*S (3)

whereA is unknown non-singular mixing matrix.

The ICA algorithm focuses on extracting the sowigaalss;(t), (t), s(t),...,s(t) only from their
mixed measure, by estimating matkix= A*, soS = E* A Each of vectoX andS could be treated as a
random variables. The ICA method consist of twstd he first one is a proper construction of deda
contrast function or cost function and the secamelis an optimization algorithm.

ICA = CONTRAST FUNCTION + OPTIMIZATION ALGORITHM

The contrast function is a quantitative measurstothastic independence of random variaBles
i.e. extracted source signals. Statistical propertif ICA methods depend on the choice of the ashtr
function [9], [8]. The key for estimating mixing mmx E = A’ is assumption of —non-Gaussian
distribution of source signals. According to thentcal limit theory the sum of independent random
variables tends toward Gaussian distribution, ugeéetain conditions, so the sum of independentaand
variables has a distribution that is closer to Gausdistribution than distribution of any elemeifthis
sum. Let vectov is a row of estimating matrii

y=v'* XandX = A*Shancey =v' * A*S, y=Z"*S. 4)

As vectory is a sum of independent random varialgghe distribution of vectoy is the less like
Gaussian distribution when the sum is reduceddamtie element i.& = v * s; for some {1, 2, ..., n},
so with the aid of vectoy it is possible to find source sigral[7]. The aim of ICA method is to find the
source signals as vectprand lead the procedure to determine such vegtahich maximize the —non-
gaussianity of vectoy what reduce the problem to optimization of propantrast function as a measure
of —non-gaussianity of sugn=v' *X.
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Artificial multichannel EGG signal has been genedain order to verify the ability of ICA
method to recover source signals i.e. independamiponents. Three source signals of the same length
have been taken under consideration: 3 cpm slawe $(t) = sin(2r 0,05t),12 cpm respiratio®(t) =
sin(2r 0,2t) and S3(t) —non-Gaussian random noise as environmental entr€e. Three channel EGG
data EGG = X = A* § has been generated by using mixing mahrix

X,] (21 22 28)[s
X,|=|13 09 26 |0S,
X,| |09 05 325/ |s,
\ ——

X=EGG A S

(5)

Results presented in the Fig. 3 and 4 illustraedgoerformance of FastICA algorithm. Signals have
been clearly separated and a main component afi@agtctrical activity of stomach i.e. slow wavash
been extracted from mixture of EGG data. Propeiicehof function F means better approximation of
negentropy, what leads to better recovering ofpedeent components.

3.2. ADAPTIVE FILTERING

The adaptive signal enhancement has been perfamtbd frequency domain by the mean of filter
proposed by H. Liang [11]. The order of adaptivikeffi used in this work has bed#=8 and the
coefficient controlling the rate of convergence basn experimentally fixed at the value of u=0.@37
Fig. 5 and Fig. 6 present the results for 3-chasimellated EGG signal = [21,22,Z3] . PSD function
in Fig. 6 does not contain interfering frequencyl(Bz), so in each channel cleaned gastric myaaactt
component have been obtained.
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Fig. 3. Before ICA: simulated independent compon&ms3 cpm slow wave i.e. the main gastric component,
S, - 12 cpm respiratory signal ai$d- random noise.
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Fig. 4. After ICA: independent components recovergdrastiCA algorithm with functioR(x) = -e*¥2 and with functiorF(x) = In(cosh(x)).
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Fig. 5. —=3-channel simulated EGG signal.
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Fig. 6. 3-channel EGG signal after adaptive fitigrivith the reference signal obtained as an inddgr@ncomponent
by the aid of ICA method.

4. RESULTS

This section gives the details of real EGG signaalysis concerning normogastric rhythm
extraction with application of earlier describedthoels. As it has been mentioned according to the
American Motility Society Clinical Gl Motility Testg Force [13] electrogastrogram of the healthy man
should contain at least 70% of the basic 3 cpm ogastric rhythm. This empirically obtained threshol
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value has been confirmed by the results from fodependent studying centers for 189 healthy mah [13
The 30% left registration of EGG signal could bgda the range of bradygastric or tachygastrictrimyt
caused by the damages in the ICC network. Belowetlhaee presented results obtained for 6 healthy
volunteers (the original signatures have beenmethi070510, 080507, 080509, 080616, 080618 and
080403). Table 1 presents exemplary results of p@&Gessing for patient 080618 leading to estimation
of bradygastric, normogastric and tachygastric hrinyfpercentage in each channel. Results in Table 1
refer to phase | and have been extracted direftdy &eeding. The values have been obtained as an
integral of power spectral density function (PSD}he limits concerning frequency of particularliea
defined rhythms. Afterwards, by application of Fast algorithm, a reference signal for each phas# an
each patient has been extracted for adaptive ifiepurposes. In four cases i.e. 070510 (phase II),
080509 (phase 1), 080618 (phase 1) and 080403sgphia in order to obtain better quality of referen

signal, the dimension of analyzed data has beaceedby principal component analysis method (PCA)
[15] before ICA application.

Table 1. Percentage of normogastric rhythm befdeptive filtering for Phase I.

EGG

Brady Normo Tachy
Channel 1 13.70 % 68.71 % 17.59 %
Channel 2 13.16 % 67.05 % 19.79 %
Channel 3 13.37 % 64.97 % 21.67 %
Channel 4 4.83 % 89.27 % 5.90 %
X 11.27% 72.50 % 16.24 %
o 4.30 % 8.13 % 7.09 %

Extracted reference signal has been then appliecadaptive filtering of registered EGG signal to
estimate of normogastric rhythm percentage. Talgee2ents suitable values for described examirgation
It has been observed, that extracted normogadtgthm oscillates around 70%, according to cited
literature. Adaptive filtration of EGG signals withference extracted using FastICA algorithm impobv
the recovery of normogastric rhythm in Phase lamparison to the values presented in Table 1, where
normogastric rhythm has been estimated without tadafiltering.

Table 2. Percentage of normogastric rhythm aftaptide fiIterinngl’ Phasel.

EGG Brady Normo Tachy
Channel 1 10.87 % 79.52 % 9.62 %
Channel 2 12.74 % 77.18 % 10.08 %
Channel 3 13.24 % 69.57 % 17.19 %
Channel 4 4.50 % 89.29 % 6.21 %

X 10.34% 78.89 % 10.78 %
o 4.02 % 8.13 % 4.61 %

Tabels Il and IV present results for Phase 11dgt080518) of EGG signal registration procedurecivhi

have been obtained with the help of the same, ibestabove procedure.
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Table 3. Percentage of normogastric rhythm befdeptive filtering for Phase 1.

EGG

Brady Normo Tachy
Channel 1 17.89 % 62.71 % 19.40 %
Channel 2 12.95 % 66.37 % 20.68 %
Channel 3 12.06 % 58.41 % 29.53 %
Channel 4 9.86 % 81.21 % 8.93 %
X 13.19% 67.18 % 19.64 %
o 3.39 % 9.91 % 8.441 %
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It is easy to notice (Table 4) that in the cas®lodse Il the normogastric rhythm estimation after
adaptive filtration is even better. Graphic repreagon of the results presented in the Tabled Ttan be
observed in the Fig. 7.

Table 4. Percentage of normogastric rhythm aftaptide filtering for Phase II.

EGG Brady Normo Tachy
Channel 1 9.11 % 78.73 % 12.16 %
Channel 2 9.06 % 80.05 % 10.89 %
Channel 3 7.42 % 74.14 % 18.44 %
Channel 4 6.53 % 83.39 % 10.07 %

X 8.03% 79.08 % 12.89 %
o 1.27 % 3.83% 3.80 %
PHASE | PHASE Il
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B afteradaptive filtering B after adaptive filtering

Fig. 7. Percentage of normogastric rhythm in EGIaal before and after adaptive filtering (for pati@80618) in the Phase | and Phase II.

5. CONCLUSIONS

As conclusion, the following aspects of the preséntork can be observed: adaptive filtration with
the reference signal extracted using FastICA algariimproves normogastric rhythm estimation in 22
among 24 cases analyzed (91.6%) in phase | ands¥#s @mong 24 cases analyzed (83.3%) in phase |
the reference signal obtained using ICA methoddaeiyoelectrical activity of the stomach covers more
than 70% of normogastric rhythm what is perfecieagrent with cited reference [13]. In phase | in 17
among 24 analyzed cases (70.8%) normogastric rhgthvared more than 70% of rhythmic behavior of
signal but in 7 left cases the level of normogagtnythm include in the range [66.88%, 69.69%] sty o
a little bit differ from threshold value. In phaden 19 among 24 analyzed cases (79.16%) normadgast
rhythm cover more than 70% but in 5 left casesléivel of normogastric rhythm include in the range
[57.46%, 66.63%)]. The mean of normogastric rhytlalecwdated for 4 channels in all the analyzed signal
has been improved in 10 of 12 cases i.e. 83%. RPie$study needs some further development leading t
proper extraction of EGG signal parameters alloviorgsuitable diagnosis.
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