PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pattern recognition approach for analysis of metabolic response to intermittent hypoxia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intermittent hypoxia (IH) elicits two forms of respiratory plasticity, which are initiated during and after exposure to IH, i.e. a long-term facilitation and a progressive augmentation of respiratory motor output. IH is often used as a model of sleep apnea and/or respiratory plasticity in humans and animals. Procedures of IH are also applied in sport medicine and rehabilitation of respiratory diseases. The aim of the present paper is an analysis of a metabolic response to acute intermittent hypoxia in a rat model. The animals were placed and monitored in a whole body plethysmographic chamber. The rats were exposed to five consecutive cycles consisting of 10-min hypoxic stimulus period separated by 10-min normoxic intervals, and additionally they were monitored up to 1 h after the final hypoxic exposure. The metabolism software analyzer recorded following variables (features): metabolic rate, carbon dioxide production, oxygen consumption and respiratory quotient. The obtained results demonstrated that acute IH causes metabolic effects during and after intermittent stimuli, which may be effectively recognized by an application of the k-NN classifiers.
Rocznik
Tom
Strony
177--183
Opis fizyczny
Bibliogr. 37 poz., tab.
Twórcy
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
autor
Bibliografia
  • [1] DEWHIRST M. W., Intermittent hypoxia furthers the rationale for hypoxia–inducible Factor–1 targeting, Cancer Res 67, 2007, pp. 854–855.
  • [2] DUDA R. O., HART P. E., STORK D. G, Pattern classification. John Wiley & Sons, New York, 2001.
  • [3] FIX E, HODGES J. L., Discriminatory analysis: nonparametric discrimination small sample performance, Project 21–49–004, report number 11, USAF school of aviation medicine, Randolph Field, Texas, 1952, pp. 280–322.
  • [4] GACCIA A. J., SIMON M. C., JOHNSON R., The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease, Genes & Dev 18, 2004, pp. 2183–2194.
  • [5] HAMRAHI H., STEPHENSON R., MAHAMED S, LIAO K. S., HOMER R. L., Physiological and Genomic Consequences of Intermittent Hypoxia, Selected Contribution: Regulation of sleep–wake states in response to intermittent hypoxic stimuli applied only in sleep, J Appl Physiol 90, 2001, pp. 2490–2501.
  • [6] HUUPPONEN E., HIMANEN S–L., HASAN J., VARRI A., Automatic quantification of light sleep shows differences between apnea patients and healthy subjects, I J Psychophysiol 51, 2004, pp. 223–230.
  • [7] JÓŹWIK A., A learning scheme for a fuzzy k–NN rule, Pattern Recog Let 1, 1983, pp. 287–289.
  • [8] JÓŹWIK A., BUDZIŃSKA K., SOKOŁOWSKA B., The two stage k–NN classifier and its use for analysis of different ways of respiration in an experimental model, Proceedings of the 10thInternational Conference on System–Modelling–Control 1, 2001, pp. 339–344.
  • [9] JÓŹWIK A., SERPICO S., ROLI F., A parallel network of modified 1–NN and k–NN classifiers–application to remote–sensing image classification, Pattern Recog Let 19, 1998, pp. 57–62.
  • [10] KELLER JM, GRAY MR, GIVENS J. A., A fuzzy k–nearest neighbour algorithm, IEEE Transactions on Systems, Man and Cybernetics 15 (July/August) , 1985, pp. 580–585.
  • [11] LAHIRI S., ROY A., BABY S. M., HOSHI T., SEMENZA G. L., PRABHAKAR N. R., Oxygen sensing in the body, Prog Biophys Mol Biol 91, 2006, pp. 249–286.
  • [12] MACFARLANE P. M., MITCHELL G. S., Respiratory long–term facilitation following intermittent hypoxia requires oxygen species formation, Neuroscience 151, 2008, pp. 189–197.
  • [13] MAHAMAD S., MITCHELL G. S., Is there a link between intermittent hypoxia–induced respiratory plasticity and obstructive sleep apnea? Exp Physiol 92(1) , 2007, pp. 27–37.
  • [14] MARTINIVE P., DEFRESNE F., BOUZIN C., SALIEZ J., LAIR F., GREGOIRE V., MICHIELS C., DESSY C., FERON O., Preconditioning of the tumour vasculature and tumour cells by intermittent hypoxia: implications for anticancer therapies, Cancer Res 66, 2006, pp. 11736–11744.
  • [15] MATEIKA J. H., NARWANI G., Intermittent hypoxia and respiratory plasticity in humans and other animals: does exposure to intermittent hypoxia promote or mitigate sleep apnoea? Exp Physiol 94(3) , 2009, pp. 279–296.
  • [16] MELILLO G., Targeting hypoxia cell signaling for cancer therapy, Cancer Metastasis Rev 26, 2007, pp. 341–352.
  • [17] MITCHELL G. S., BAKER T. L., NANDA S. A., FULLER D.D., ZABKA A. G., HODGEMAN B. A., BAVIS R. W., MACK K. J., OLSON Jr. E. B., Intermittent hypoxia and respiratory plasticity, J Apply Physiol 90(6) , 2001, pp. 2466–2475.
  • [18] MORTON J. P., CABLE N. T., Effects of intermittent hypoxic training on aerobic and anaerobic performance, Ergonomics 48, 2005, pp. 1535–1546.
  • [19] NEUBAUER J. A., Physiological and Genomic Consequences of Intermittent Hypoxia, Invited Review: Physiological and pathophysiological responses to intermittent hypoxia, J Appl Physiol 90, 2001, pp. 1593–1599.
  • [20] PENG Y. Y–J., OVERHOLT J. L., KLINE D., KUMAR G. K., PRABHAKAR N. R., Induction of sensory long–term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas, Proc Natl Acad Sci USA 100, 2003, pp. 10073–10078.
  • [21] PRABHAKAR N. R., DICK T. E., NANDURI J., KUMAR G. K., Systemic, cellular and molecular analysis of chemoreflex–mediated sympatho–excitation by chronic intermittent hypoxia, Exp Physiol 92.1, 2006, pp. 39–44.
  • [22] PRABHAKAR N. R., PENG Y. J., YUAN G., KUMAR G. K., Reactive oxygen species facilitate oxygen sensing, Novaris Found Symp 272, 2006, pp. 95–99.
  • [23] REEVES S. R., GOZAL E., GUO S. Z., SACHLEBEN L. R. Jr, BRITTIAN K. R., LIPTON A. J., GOZAL D., Effects of long–term intermittent and sustained hypoxia on hypoxic ventilatory and metabolic responses in the adult rat, J Appl Physiol 95, 2003, pp. 1767–1774.
  • [24] SAASTAMOINEN A., HUUPPONEN E., VARRI A., HASAN J., HIMANEN S. L., Computer program for automated sleep depth estimation, Comp Meth Prog Biomed 82, 2006, pp. 58–66.
  • [25] SEMENZA G. L., Evaluation of HIF–1 inhibitors as anticancer agents, Drug Discov Today 12, 2007, pp. 853–859.
  • [26] SEMEZA G. L., HIF–1: mediator of physiological and pathophysiological responses to hypoxia, J Appl Physiol 88, 2000, pp. 1474–1480.
  • [27] SEREBROVSKAYA T. V., SWANSON R. J., KOLESNIKOVA E. E., Intermittent hypoxia: mechanisms of action and some applications to bronchial asthma treatment, J Physiol Pharmacol 54 (suppl. 1) , 2003, pp. 35–41.
  • [28] SEREBROVSKAYA T.V., Intermittent hypoxia research in the former Soviet Union and commonwealth of independent states: history and review of the concept and selected applications, High Alt Med Biol 3, 2002, pp. 205–221.
  • [29] SOKOŁOWSKA B., JÓŹWIK A., Statistical evaluation of ventilatory patterns in response to intermittent hypoxia in the rabbit, J Physiol Pharmacol 56 (suppl. 4) , 2005, pp. 203–207.
  • [30] SOKOŁOWSKA B., POKORSKI M., Ventilatory augmentation by acute intermittent hypoxia in the rabbit, J Physiol Pharmacol 57 (suppl. 4) , 2006, pp. 341–347.
  • [31] SOKOŁOWSKA B., RĘKAWEK A., JÓŹWIK A., Respiratory responses to acute intermittent hypoxia and hypercapnia in awake rats, J Physiol Pharmacol 59 (suppl. 6) , 2008, pp. 659–667.
  • [32] TALKS K. L., TURLEY H., GATTER K. C., MAXWELL P. H., PUGH C. W., RATCLIFFE P. J., HARRIS A. L., The expression and distribution of the hypoxia–inducible factors HIF–1α and HIF–2α in normal human tissues, cancers, and tumor–associated macrophages, Am J Pathol 157, 2000, pp. 411–421.
  • [33] TEPPEMA L. J., DAHAN A., The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis, Physiol Rev 90, 2010, pp. 675–754.
  • [34] TOFFOLI S., MICHIELS C., Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours, FEBS J 275, 2008, pp. 2991–3002.
  • [35] WANG G. L., JIANG B. H., RUE E. A., SEMENZA G. L., Hypoxia–inducible factor 1 is a basic–helix–loop–helix–PAS heterodimer regulated by cellular O2 tension, Proc Natl Acad Sci USA 92, 1995, pp. 5510–5514.
  • [36] ZHONG H., De MARZO A. M., LAUGHNER E., LIM M., HILTON D.A., ZAGZAG D., BUECHLER P., ISAACAS W. B., SEMENZA G. L., SIMONS J.W., Overexpression of hypoxia–inducible factor 1α in common human cancers and their metastases, Cancer Res 59, 1999, pp. 5830–585.
  • [37] ZHU M., CHEN W., HIRDES J. P., STOLEE P., The K–nearest neighbor algorithm predicted rehabilitation potential better than current Clinical Assessment Protocol, J Clin Epidemiol 60, 2007, pp. 1015–1021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0017-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.