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AIR POLLUTION FORECASTING MODEL CONTROL

In the paper we discuss the analysis of multidinterad data. We consider the relationship betweemthising
a special fuzzy number form. Calculations are kept set of actual and historical meteorological data
Our model using to forecast pollution concentragiggmimportant in today because pollutions havey g influence
on our life in particular pollutions PM10 (partiat® matter less than 10m in diameter). The effects of inhaling
particulate matter have been widely studied in msnand animals and include asthma, lung cancedjosascular
issues, and premature death. Because of the sitieeoparticle, they can penetrate the deepestqfattte lungs.
In Air Pollution Forecasting Model for the choserather forecast we find similar weather forecasext, we find real
meteorological situations from the historical defaich correspond to them and we create fuzzy nusplikat is, the
fuzzy weather forecasts. Then we estimate the italid the weather forecast on the basis of théohisal data and its
accuracy. We investigate it with the help of a @eindicators, which corresponds to the parametérthe weather
forecast, using the similarities rule of the weatfogecast to the meteorological situation, a pragistance and data
analysis. This comprehensive analysis allows usvestigate the effectiveness of forecasting pmhutoncentrations,
putting the dependence between particular attrébdésscribing the weather forecast in order andipgothe legitimacy
of the applicable fuzzy numbers in air pollutiomecasting.
Models are created for data, which are measuredf@edasting in Poland. By reason of this data mwodels are
testing in real sets of data and effects are redeiv active system.

1. INTRODUCTION

The first trials of forecasting everyday phenomeparticularly meteorological, began around
650 B.C. [1] by the Babylonians. They tried to poedshort-term weather changes based on the
appearance of clouds. Methods of weather foreapstiere increasingly perfected in subsequent
centuries. In the XX century, as a result of theeligopment of mathematics and physics, models which
used partial differential equations were formulatétiese equations which describe the state of the
atmosphere, could be solved numerically. Howevar,1961 E.Lorenz showed the limitation of
possibilities of these models — first of all thelraotic character. These models are only effedtiva
few days — maximum a week. However, for a 3-damttreir effectiveness is high.
In recent years many prediction approaches, suskasistical [2], fuzzy [3], [4], neural networkS][ [6],
neuro-fuzzy predictor [7] have emerged. Using nucaéshort-term weather prediction, research ihto t
forecasting of air pollution concentrations beg@h [9]. This task is very difficult because apidm the
information about meteorological conditions, theismon of air pollution depends first of all on the
immission. At this moment, emission is quite actelgameasured from a single, high pointer emitter
(e.g. carbon power stations). Measurement of lowssion, communal and municipal, is almost
impossible. Moreover, 3D models of immission cadtinlg (e.g. Gaussian puff modelling system) require
a field of wind and a field of temperature measiioen several hundred metres above ground level.
Such measurements are only conducted in a verypfaees in the world with the help of a sodar. lis th
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situation Fuzzy sets theory is helpful [10], [1[12]. Use of this method is known in many matheoati
forecasting models. It is usually used when th@rmftion transferred to the model is imprecise or
incomplete [13], [14]. Many everyday phenomenarofenbiguous, continuous and imprecise nature may
be effectively described using this theory.

The problem is with knowledge. We do not have peéinowledge about the weather in the future. We
only have numerical forecasting, i.e. conditionsiochkhmay announce many similar meteorological
situations. Because of the essential influencaraésion, historical data must come from areas aimd

the place for which we are calculating a forec&snilarity of the area includes the following parters:
surface roughness (topography), number of habitg@icentage of industry, rural, heavy traffic, low
buildings and green regions. These are the onlgssilale factors that determine emission. The redult
working APFM (Air Pollution Forecasting Model) is farecast of air pollution concentration, among
others PM10 for the next day. It is a speciallysgro pollution because PM10 has a huge influence or
human life [15], [16].

In each stage we use meteorological data with henadtical apparatus [17], [18]. In particular in AR

we use the weather forecasts derived from the Gbusofor Small Scale Modelling (COSMO) model
based on the Local-Model (LM) of Deutscher Wettezriat (DWD).

In paper we assume that objects are similar whein tlistance are small. Objects availing in paper a
vectors and matrices. In vector spadédR vectors we use (1) for terms distance betwégaocts.

1
) 1
d¢ (x,y) =(Z\>ﬁ —yilkjk,x,yD R’ k>0.
i=1 (1)
For k>0, kON the distance (1) is metric. The distance betwnattix objects is composition of vector
objects. For terms distance between matrices wg2)se

don(aB)=d; (dr(a b )|0,) fora=|a, | B =, | ABOR™™, @)

where O, is a zero vector and, ,b_arei-th rows in matrices A and B.

In the first instance we introduce a term, timeizmm set T, in which the forecast will be calcuthte
T ={t =ilht:i= O,...,nT},At >0, where At means a time step (usualiy=1 hour).
We will identify the term from seT with O hour UTC. We assume that for each term frbme have
values of d, parameters of a numerical weather forecast (ergpéeature, sea level pressure, wind

direction and speed, cloud cover — high, mediumw)ld-or the term weather forecast we will underdtan

a matrix F O R Moreover, we assume that we possess the datadagmfor many years in every
term tOT . Every termt describes the state of the atmosphere with thefaite d, parameters measured
near the surface (e.g. temperature, wind directaoy) the value of concentrations whose size we are
forecasting. The set of meteorological data forhesighsequent termhiJT defines the meteorological
situation. The meteorological situation will be megented by a matrix&[] R The aerosanitary
situation is the number of sequences of conceatratin t (0T terms, so it is a time series belonging to
R™ . In order for the model to function properly itdssential to have all the historical data.

Let us denote the set of weather forecastg/Bs the set of meteorological situations S, the set of
pollution concentrations asS.
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1.1 FIRST STAGE OF THE MODEL

In the first stage, because of the huge data ramgestart frommin-max normalisation for every
weather forecast in every column separately. Letaise:
f"OWF — a chosen weather forecast for which we are catitg the forecast of pollution
concentrations.
k =k, = k,— first parameter used to control APFM systemeitides about dispersion between elements
from setWF . In determining the paramet&r we follow the data diversification. For parameker 1and
matrices which size is meaningful i.e. the numbieows is greater than 24 and the number of coluisns
greater than 9, the distances between the matdoessmall so the grouping of data is not good.
Experiments have shown it in paper [19].
© — a real number set representing distances betewaty normalised weather forecast frodfr and
fY so @={a)l,...,a)q},q = WF| -1where @ = g (fi, fD) and f OWF. |A means cardinality of
set A.
We prefer fractional distance — distance (1) kork, D(O,l) because of better element diversification in
a multidimensional space [19].
In the next step we define second parametelParametee decides about cardinality of similar elements
from setWF . ¢ is decided in (3).

Di=l...,qc")| <&, (3)

whereep 0O foriO{1,...,q}, iis the number of an element. The result of thet festage is set
£-WF(f").

1.2 SECOND STAGE OF THE MODEL

In the second stage, in connection with resultsmfrthe first stage, we create subset
£-MSF O MS. Every weather forecast is related with meteoricligsituation with date. Therefore for
£-MS"we consider pairs (f,s), f OWF,sOMS. Then, we set parameters describing the
meteorological situations and the time horizoneAfeview of the chosen meteorological situatians,
get a sequence of values:

Uy U

iDl,...,dS( t(}),.--, t(,rin)),
where
m:‘g—MSF‘. (4)

We modify this sequence into a fuzzy number usisgexial form of the fuzzy number given by (5). For
each attributei and in each hout 0T we have individual fuzzy number. This fuzzy number
approximate to the Gaussian function. The fuzzy lbem{5) was chosen based on our own calculations
and based on paper [20].
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1, (x) = vif xO(m, ,m, ) (5)

wherem, <m, ,0, >0,0, >0 form ,m, ,0, ,0, UR,for each attribute in each hourt0T.

An individual fuzzy weather forecast consists dinae series (5). We receive fuzzy weather fore(@st
— equivalent to the real weather.

@' =|u,] for1<i<d, tOT 6)

wherei is a number of attribute andis an hourg’ is a function for which we determine membership
matrix composed from fuzzy numberg;, : R* — [O;L]. In ¢’'we can take property values. We receive
@(s) =[x, (s,)] which is membership matrixsO R™ % A time series is a sequence of the regularly

sampled quantities of an observed system. In ngdthenomena we have a different types of time serie
The time series controls the chaotic behaviour [2dépendent phenomena in the world.

Fuzzy weather forecast is need to be able to gleaud precisely define the quality of a weatheetaist
and assign meteorological situation relative touazy weather forecast [14]. The assignment of a
coefficient quality of a weather forecast is thenpof entrance for the exact determination of the
individual influence of an attribute on forecastimgjlution concentrations in the future.

1.3 THIRD STAGE OF THE MODEL

In the third stage we review all meteorologicauaiion s[OMS [ R Then, for every
meteorological situatios we calculateg”(s) and numbero(s) = ‘qd](sx using formula (7).

() = a2 (ag (g(s.), )], 0, ) sTMS KD [0d] )

Let us fix 7 D[O,l] and determine a sgt— MS O MS that |/7 - MS| =r, wherep(s) <n for slln -MS.

For subset7—MS we consider pairgs, p), p0 AS. Then we fix the weight of the meteorological
situations using following formulav(s) =1- p(s),s0n - MS

1.4 FOURTH STAGE OF THE MODEL

In the fourth stage we choosetime series from seAS, where r :|/7 - MS >1. Afterwards, for
every chosen time series we get a functiph’ : T — R}, j=1...,r with weightw!”’ OR, representing

pollution concentrations. For eathl T we create a sequenép‘” ®),..., p‘”(t))..

Then we take these sequences and we carry ougaagagion process to obtain one time series.
We have used two methods-aggregation (10) and/ -aggregation (12). We base these methods on the

well-known methods: (8) and (9).
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>0 ()
Dtl]T:ua,t = Ier— ’ (8)

>

i=1

Doy = M P (1) ©)

wherea means average aggregation, means maximum aggregation.
Let us denote for eachdT the following time series,, as a time series received from method (8),

U, as atime series received from method (9) andas a time series received from the actual resedrche

data. Forl =7 we determine two numbers based on knowledge albuhlsaerosanitary situation. We

forecast pollution concentrations having partialokiedge, that is real number of pollution
concentrations. We execute some calculations oa saries and we get parametersfrom the first
function (10) anda, 5 from the second function (12).

9(@) = (o, + Q- )ty — 14, (10)

t=0

where

Z (:uri,t = M Moy = Moo Mr o+ o M, ,t)

|
a = t=0
|
z (:ua,t - :um,t)

t=0

(11)

2 1

I 2
if Z(,u&t —,um’t) #0. When we determine the optimal value of the patame for (10) we receive
t=0
formula (11). We proceed analogically with value @f8 for (12) and we receive formulas (13), (14).
| 2
(@, B) = Y (@ttys + Bt = 1) (12)

t=0

where

| | | |
Z Mo Z :uri,t - Z MM Z Mot My
q =10 =0 t=0 t=0

| | | 2
z luri,t Z :Uaz,t - (z M Moy j
t=0 t=0 t=0

: (13)

| 2
if z ,urfm Z l'lzit - (Z :um,t:ua,tJ #0
t=0
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| | | |
z MM Z /'I:,t - Z MMy z Mo ¢
=0 =0 =0

t=0

| | | 2
Z :ur?mt Z /'I:it - [z Mot My j

t=0

ﬂ:

: (14)

| | | 2

if zyr?’l,tZ/'ls,t _[Zlum,tﬂa,tj z0
t=0 t=0 t=0

From (10) we receive parametgrgiven by (11) and from (12) we receive parameters given by (13)

and (14).

Then using methods (10), (12) and having knowleslgeut collateral information i.e. first ten houeslr

pollution concentrations in the day we being fos¢cave can calculate for eathl T the final time series
H; . [18]. Fig. 1 shows the respective stages of theahatwork.

METEOROLOGICAL METEOROLOGICAL

FORECAST SITUATION
Numbers - » Fuzzy set ———» Fuzzy numbers
Grouping
Fuzzy grouping
time series € - set of time series
Aggregation
AEROSANITARY POLLUTION
FORECAST CONCENTRATIONS

Fig. 1. The stages of Air Pollution Forecast Model.

2. CHARACTERISTICS OF FUZZY WEATHER FORECAST

A fuzzy weather forecasty’ is determined for each attribute individually and is evenly

distributed on each hourJT. It is valued on the basis of data similarity gmebper weights of
classification. We researched the behaviour of yuzeather forecasts using different sets of forecas
data. This is necessary because we have weattesagis from a short period of time (only five ygars
Therefore, continuous work in a COSMO LM model vireatforecast [22], [23] is not heterogeneous to
finding the period of a weather forecast whichhie best estimate of real meteorological situatidms.
Figs 2, 3, 4 fuzzy weather forecasts are showngataith real meteorological situations. The fuzzees

a good measure with which to mark the quality afeather forecast both its elements and the whole
weather forecast because fuzziness characterisasdltering of real data around the prognosis.
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Fig. 2. Fuzzy weather forecast for wind speedhaite on 10 January 2006.
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Fig. 3. Fuzzy weather forecast for temperaturébatte on 10 January 2006.

» REAL METEOROLOGICAL SITUATION GRADE OF MEMBERSHIP N 1 m@1,0.717 [(0.7,0) []0

34 _I
39 1 -
44 B
49 I
| I
8 I o . o .
L . Ry aE :

98 -

[+:] ~N N o u
mmwmw%mmg

T T T T T T T T T T T
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
uTtcC

Fig. 4. Fuzzy weather forecast for humidity atttdoan 10 January 2006.

3. PROPOSED FEATURES TO ESTIMATE THE QUALITY OFFAJZZY WEATHER FORECAST

The first feature is research volume for all atitdsi in each hourt T . We receive the first
numberF ' characterised by numbers.
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F't = ].;M,I(X)dx=@(ah +02H)+ m, -m, (15)

wherei D{l,...,ds},t D{O,...,nT},UL“ 0, M ,m, 0 R ks
Let us definef (t) = F"'for eacht OT . In Figs 5, 6, 7 the integral of functionsg, for all tOT and for

the chosen attributes are shown using real meteorological situations:dwspeed, temperature and
humidity. In Fig. 8 fuzzy weather forecast is shdanall attributes.

25 |
Al
1.5 i
i
" ! /‘/\—\_N“
=] i i ; et BN
0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 B4 6B
urc
Fig. 5. fi for wind speed attribute on 10 January 2006.
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Fig. 6. fi for temperature attribute on 10 January 2006.
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Fig. 7. fi for humidity attribute on 10 January 2006.
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Fig. 8. 1:i for all attributes on 10 January 2006.

For eachy , it is the grade of membership =f

The second feature is researching the quality @dizay weather forecast by comparing it to a real
meteorological situation. In this way we keep amitaite characterised by a grade of membership for
each hour. In Figs 9, 10, 11 grades of membershigvind speed, temperature and humidity are shown.

.- -
s W

06 -

it g4 “

02
o

0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68
uTC

Fig. 9. The grade of membershyg , for wind speed attribute antl = 72o0n 10 January 2006.
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Fig. 10. The grade of membership , for temperature attribute anll = 720n 10 January 2006.
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Fig. 11. The grade of membershiy , for humidity attribute andl = 720n 10 January 2006.

On the basis of the received sets of featuresedtian 4 we propose several indices which desdhibe
qualities of the weather forecast. These will repre distinctness, precision and its credibility.

4. MODEL CONTROL

The APFM is controlled by three parameters whichieha fundamental influence on forecasting.
These parameters ark:for distance (2)¢ andr. Distancedlﬁﬁﬂ)"df depends on the coefficiektwhich
has influence on which weather forecasts will b@sem. Theg parameter determines how many
meteorological situations will be chosen in thestfistage and they parameter indicates how many

aerosanitary situations will be chosen in the tstabe. All the parameters can be changed indepdpde
from each other, but each of them has a consideratgact on the model.

In particular parameterks and & have an influence on the quality of fuzzy weatleetasty .

440
400
330
300

PM10

== Feal time series.

= = Time series using
maximum

230 aggregation

200 Time series using

150 average
aggregation

100

a0

]

01 23436 78 310121314 151617 1819 D 2122 2324252627 25 293031 323334 35
uTC

Fig. 12. Pollution concentration runs: time setisiig methods (8), (9) using distance (2) witiF 0.1
and real time series on 9 January 2006.
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Fig. 13. Pollution concentration runs: time setisgig methods (8), (9) using distance (2) whti= 2
and real time series on 9 January 2006.

In Figs 12, 13 we show representatives graphs wihéste been chosen from dozens experimental
results.

Experiments showed that the results for distangen{th k = 0.1and k = 2 are different. On the
selection of the set of similar weather forecasesrtsymmetrical difference is not equal to 0. lg.A2
we can observe that for a low valuelofwe have better results than for the big ones.

Thanks to the parameter we receive a set—-WF(f" .)In Fig. 14 we can see that the set of

similar weather forecasts is too small when itslicality is 5. The set of similar weather forecasttoo
big when its cardinality is 20. This has an impottanfluence on forecasting. The optimal number of
elements in the set—MS' is about 10. Too many variable samples have treetfiiat for attributé in
each houtt T, m, is more distant fronm, , which causes greater fuzziness. And this hasférence

on the inaccuracy of the pollution concentraticmrg€ast. This can be seen in Fig. 15.

o 450

-

= 400

1 == Real time series
30 = Time series using
74 maximum

aggregation

2m Time series using
’ average
150 aggregation
100
5 = = .

0
01T 23 45678 31MMI121314121617 1819 021 222324252627 28293031 3233 3435
uTC

Fig. 14. Pollution concentrations runs: time setisisig methods (8), (9) using =5 and real time series on 9 January 2006.
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o 3480 == Real time series.
300 % = Time series using
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average
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Fig. 15. Concentration pollution runs: time setisgg methods (8), (9) using = 10and real time series on 9 January 2006.

Through parametey we receiver; —MS which we use to forecast pollution concentrationthe
fourth stage. In Fig. 16 we can see that 10 have too small influence on final time series anthbly
wander away from this final time series. The biggerthe better, the optimal cardinality of the set
n—MS is about 20. This can be seen in Fig. 17.

(=
-
= 400
B. 350 == Feal time series
300 = Time series using
25 maximum
aggregation
200 Time series using
1=0 average
aggregation

10
a0
0

01 234367 8 310M1215314131617 181920 NN 222324 D00 T /230N 32333435

uTC

Fig. 16. Pollution concentration runs: time setiegig methods (8), (9) using = 10and real time series on 9 January 2006.
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= Time series using
maximum
aggregation
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average
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01234567 8 21011121314 1518171819 2021222324252627282930 3132333435
uTtc

Fig. 17. Pollution concentration runs: time setisgig methods (8), (9) using = 20and real time series on 9 January 2006.

5. CONCLUSIONS

Computations were performed for weather forecast2d03-2007, meteorological situations in
1997-2007 and pollution concentrations in 1998-200th At=1. We have d, = 28attributes

describing weather forecasts, while the number etewrological situations was equal th = . 9

Attributes describing meteorological situations &ehosen based on investigations by [24]. The effec
the suggested method for the prediction of a wedtrecast was introduced for data from COSMO LM
model, but the same method can be used for diffeveather forecasts based on numerical models. The
condition which has to be met is to have real nrelegical data.

In Figs 2, 3, 4 the fuzzy weather forecasts ararljleand explicitly shown and it can be seen that t
fuzzy weather forecast has a little fuzziness wthengrade of membership is large. It is descritmed f
single indicators: fuzziness average and grade evhbership average in Tabs 1, 2. By analysing other
examples, a fairly significant dependence betwerallsfuzziness and membership can be observed &
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reverse correlation between them, because if tharfass is greater then the accuracy of the pragms
minor.

Analyzing the influence of a fuzzy weather foredastthe fourth stage in APFM, it can be determined
whether the fuzzy average is minor and the gradeeshbership average is minor in Tab. 2, forecasting
pollution concentrations is not precise enoughuzzy average is minor and the grade of membership
average is large in Tab. 1, forecasting pollutionaentrations is more precise.

Table 1. Results of the tests for attribute@ind speedtemperature and humidity @nlanuary2009.

Attribute Fuzzy average Grade of membership average
Wind speed 0.31 0.69

Temperature 15.10 0.16

Humidity 19.49 0.10

Table 2. Results of the tests for attributegind speedtemperature and humidity d® Jnuary2009.

Attribute Fuzzy average Grade of membership average
Wind speed 0.25 0.75

Temperature 18.39 0.07

Humidity 21.01 0.02
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