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AIR POLLUTION FORECASTING MODEL CONTROL 

In the paper we discuss the analysis of multidimensional data. We consider the relationship between them using 
a special fuzzy number form. Calculations are kept on set of actual and historical meteorological data. 
Our model using to forecast pollution concentrations is important in today because pollutions have very big influence 
on our life in particular pollutions PM10 (particulate matter less than 10 µm in diameter). The effects of inhaling 
particulate matter have been widely studied in humans and animals and include asthma, lung cancer, cardiovascular 
issues, and premature death. Because of the size of the particle, they can penetrate the deepest part of the lungs. 
In Air Pollution Forecasting Model for the chosen weather forecast we find similar weather forecasts. Next, we find real 
meteorological situations from the historical data which correspond to them and we create fuzzy numbers, that is, the 
fuzzy weather forecasts. Then we estimate the validity of the weather forecast on the basis of the historical data and its 
accuracy. We investigate it with the help of a set of indicators, which corresponds to the parameters of the weather 
forecast, using the similarities rule of the weather forecast to the meteorological situation, a proper distance and data 
analysis. This comprehensive analysis allows us to investigate the effectiveness of forecasting pollution concentrations, 
putting the dependence between particular attributes describing the weather forecast in order and proving the legitimacy 
of the applicable fuzzy numbers in air pollution forecasting.   
Models are created for data, which are measured and forecasting in Poland. By reason of this data our models are 
testing in real sets of data and effects are received in active system. 

1.  INTRODUCTION 

The first trials of forecasting everyday phenomena, particularly meteorological, began around  
650 B.C. [1] by the Babylonians. They tried to predict short-term weather changes based on the 
appearance of clouds. Methods of weather forecasting were increasingly perfected in subsequent 
centuries. In the XX century, as a result of the development of mathematics and physics, models which 
used partial differential equations were formulated. These equations which describe the state of the 
atmosphere, could be solved numerically. However, in 1961 E.Lorenz showed the limitation of 
possibilities of these models — first of all their chaotic character. These models are only effective for a 
few days — maximum a week. However, for a 3-day term their effectiveness is high.  
In recent years many prediction approaches, such as statistical [2], fuzzy [3], [4], neural networks [5], [6], 
neuro-fuzzy predictor [7] have emerged. Using numerical short-term weather prediction, research into the 
forecasting of air pollution concentrations began [8], [9]. This task is very difficult because apart from the 
information about meteorological conditions, the emission of air pollution depends first of all on the 
immission. At this moment, emission is quite accurately measured from a single, high pointer emitter 
(e.g. carbon power stations). Measurement of low emission, communal and municipal, is almost 
impossible. Moreover, 3D models of immission calculating (e.g. Gaussian puff modelling system) require 
a field of wind and a field of temperature measure from several hundred metres above ground level.  
Such measurements are only conducted in a very few places in the world with the help of a sodar. In this 
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situation Fuzzy sets theory is helpful [10], [11], [12]. Use of this method is known in many mathematical 
forecasting models. It is usually used when the information transferred to the model is imprecise or 
incomplete [13], [14]. Many everyday phenomena of an ambiguous, continuous and imprecise nature may 
be effectively described using this theory. 
The problem is with knowledge. We do not have precise knowledge about the weather in the future. We 
only have numerical forecasting, i.e. conditions which may announce many similar meteorological 
situations. Because of the essential influence of emission, historical data must come from areas similar to 
the place for which we are calculating a forecast. Similarity of the area includes the following parameters: 
surface roughness (topography), number of habitants, percentage of industry, rural, heavy traffic, low 
buildings and green regions. These are the only accessible factors that determine emission. The result of a 
working APFM (Air Pollution Forecasting Model) is a forecast of air pollution concentration, among 
others PM10 for the next day. It is a specially chosen pollution because PM10 has a huge influence on 
human life [15], [16]. 
In each stage we use meteorological data with a mathematical apparatus [17], [18]. In particular in APFM 
we use the weather forecasts derived from the Consortium for Small Scale Modelling (COSMO) model 
based on the Local-Model (LM) of Deutscher Wetter Dienst (DWD). 
In paper we assume that objects are similar when their distance are small. Objects availing in paper are 
vectors and matrices. In vector space Rd

 for vectors we use (1) for terms distance between objects. 
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For Nkk ∈≥ ,0  the distance (1) is metric. The distance between matrix objects is composition of vector 
objects. For terms distance between matrices we use (2). 
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where n0  is a zero vector and .., ii ba  are i -th rows in matrices A and B.  

In the first instance we introduce a term, time horizon set T, in which the forecast will be calculated. 
{ } 0,,,0: >∆=∆⋅== tnititT T… , where t∆  means a time step (usuallyt∆ =1 hour).  

We will identify the term from set T  with 0 hour UTC. We assume that for each term from T we have 
values of fd  parameters of a numerical weather forecast (e.g. temperature, sea level pressure, wind 

direction and speed, cloud cover — high, medium, low). For the term weather forecast we will understand 
a matrix ( ) fT dnRF ×+∈ 1 . Moreover, we assume that we possess the data from days for many years in every 
term Tt ∈ . Every term t describes the state of the atmosphere with the aid of the sd parameters measured 

near the surface (e.g. temperature, wind direction) and the value of concentrations whose size we are 
forecasting. The set of meteorological data for each subsequent term Tt ∈  defines the meteorological 
situation. The meteorological situation will be represented by a matrix ( ) sT dnRS ×+∈ 1 . The aerosanitary 
situation is the number of sequences of concentrations in Tt ∈ terms, so it is a time series belonging to 

1+TnR . In order for the model to function properly it is essential to have all the historical data. 
Let us denote the set of weather forecasts as WF , the set of meteorological situations as MS , the set of 
pollution concentrations asAS . 
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1.1  FIRST STAGE OF THE MODEL 

In the first stage, because of the huge data range, we start from min-max normalisation for every 
weather forecast in every column separately. Let us define: 

WFf ∈∗  — a chosen weather forecast for which we are calculating the forecast of pollution 

concentrations. 

21 kkk == — first parameter used to control APFM system, it decides about dispersion between elements 

from set WF . In determining the parameter k  we follow the data diversification. For parameter 1>k and 
matrices which size is meaningful i.e. the number of rows is greater than 24 and the number of columns is 
greater than 9, the distances between the matrices are small so the grouping of data is not good. 
Experiments have shown it in paper [19]. 
Θ  — a real number set representing distances between every normalised weather forecast from WF and 

∗f  so { } 1,,,1 −==Θ WFqqωω … where ( ) ( )∗×+= ffd i
dn

ki
fT ,1ω  and WFf i ∈ . A  means cardinality of 

set A . 
We prefer fractional distance — distance (1) for ( )1,0, 21 ∈kk  because of better element diversification in 

a multidimensional space [19]. 
In the next step we define second parameter ε . Parameter ε  decides about cardinality of similar elements 
from set WF . ε  is decided in (3). 

 ,,,1 εω <∀ = iqi …

  (3) 

where Θ∈iω  for { }qi ,,1…∈ , i is the number of an element. The result of the first stage is set 

( )∗− fWFε . 

1.2  SECOND STAGE OF THE MODEL 

In the second stage, in connection with results from the first stage, we create subset 

MSMS F ⊂−ε . Every weather forecast is related with meteorological situation with date. Therefore for 
FMS−ε we consider pairs MSsWFfsf ∈∈ ,),,( . Then, we set parameters describing the 

meteorological situations and the time horizon. After review of the chosen meteorological situations, we 
get a sequence of values: 

 ( ),)(
,

)1(
, ,,,,1 m

ititsdiTt ξξ ……∈∈ ∀∀  

where 

 .FMSm −= ε   (4) 

We modify this sequence into a fuzzy number using a special form of the fuzzy number given by (5). For 
each attribute i  and in each hour Tt ∈  we have individual fuzzy number. This fuzzy number is 
approximate to the Gaussian function. The fuzzy number (5) was chosen based on our own calculations 
and based on paper [20]. 
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where 0,0,

,,,, 2121 >>≤
titititi

mm σσ  for Rmm
titititi
∈

,,,, 2121 ,,, σσ ,for each attribute i  in each hour Tt ∈ . 

An individual fuzzy weather forecast consists of a time series (5). We receive fuzzy weather forecast (6) 
— equivalent to the real weather. 

 [ ] Ttdifor sti ∈≤≤=∗ ,1,µφ  (6) 

where i  is a number of attribute and t  is an hour. ∗φ  is a function for which we determine membership 

matrix composed from fuzzy numbers. [ ]1,0: →∗ sd
it Rφ . In ∗φ we can take property values. We receive  

( ) ( )[ ]itit ss µφ =∗  which is membership matrix, ( ) sT dnRs ×+∈ 1 . A time series is a sequence of the regularly 

sampled quantities of an observed system. In natural phenomena we have a different types of time series. 
The time series controls the chaotic behaviour [21] independent phenomena in the world. 
Fuzzy weather forecast is need to be able to clearly and precisely define the quality of a weather forecast 
and assign meteorological situation relative to a fuzzy weather forecast [14]. The assignment of a 
coefficient quality of a weather forecast is the point of entrance for the exact determination of the 
individual influence of an attribute on forecasting pollution concentrations in the future. 

1.3  THIRD STAGE OF THE MODEL 

In the third stage we review all meteorological situation ( ) sT dnRMSs ×+⊂∈ 1 . Then, for every 

meteorological situation s we calculate ( )s∗φ  and number ( )ss ∗= φρ )(  using formula (7). 

 ( ) ( )( )[ ]( ) [ ],1,0,,,, 1..
1 ∈∈= +∈

∗+∗ kMSssdds
Ts

sT
nTtdtt

d
k

n
k 01φφ  (7) 

Let us fix [ ]1,0∈η  and determine a set MSMS ⊂−η  that rMS =−η , where ηρ <)(s  for MSs −∈η . 

For subset MS−η  we consider pairs ASpps ∈),,( . Then we fix the weight of the meteorological 
situations using following formula .),(1)( MSsssw −∈−= ηρ  

1.4  FOURTH STAGE OF THE MODEL 

In the fourth stage we choose r  time series from set AS , where 1>−= MSr η . Afterwards, for 

every chosen time series we get a function rjRTp j ,,1,: 0
)(

…=→ +  with weight Rw j ∈)( , representing 

pollution concentrations. For each Tt ∈ we create a sequence ( ).)(,),( )()1( tptp r
… . 

Then we take these sequences and we carry out an aggregation process to obtain one time series. 
We have used two methods α -aggregation (10) and αβ -aggregation (12). We base these methods on the 

well-known methods: (8) and (9). 
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where a  means average aggregation, m  means maximum aggregation. 
Let us denote for each Tt ∈ the following time series ta ,µ  as a time series received from method (8), 

tm,µ as a time series received from method (9) and tr ,µ as a time series received from the actual researched 

data. For 
4
Tn

l ≈  we determine two numbers based on knowledge about actual aerosanitary situation. We 

forecast pollution concentrations having partial knowledge, that is real number  of pollution 
concentrations. We execute some calculations on time series and we get parameters α  from the first 
function (10) and βα ,  from the second function (12). 
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tmta µµ . When we determine the optimal value of the parameter α  for (10) we receive 

formula (11). We proceed analogically with value of  βα ,  for (12) and we receive formulas (13), (14). 
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From (10) we receive parameter α given by (11) and from (12) we receive parameters βα ,  given by (13) 

and (14). 
Then using methods (10), (12) and having knowledge about collateral information i.e. first ten hours real 
pollution concentrations in the day we being forecast, we can calculate for each Tt ∈  the final time series 

tf ,µ [18]. Fig. 1 shows the respective stages of the model at work. 

 

Fig. 1. The stages of Air Pollution Forecast Model. 

2.  CHARACTERISTICS OF FUZZY WEATHER FORECAST 

A fuzzy weather forecast ∗φ  is determined for each attribute i  individually and is evenly 

distributed on each hour Tt ∈ . It is valued on the basis of data similarity and proper weights of 
classification. We researched the behaviour of fuzzy weather forecasts using different sets of forecast 
data. This is necessary because we have weather forecasts from a short period of time (only five years). 
Therefore, continuous work in a COSMO LM model weather forecast [22], [23] is not heterogeneous to 
finding the period of a weather forecast which is the best estimate of real meteorological situations. In 
Figs 2, 3, 4 fuzzy weather forecasts are shown along with real meteorological situations. The fuzziness is 
a good measure with which to mark the quality of a weather forecast both its elements and the whole 
weather forecast because fuzziness characterises the scattering of real data around the prognosis. 
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Fig. 2. Fuzzy weather forecast for wind speed attribute on 10 January 2006. 

 

Fig. 3. Fuzzy weather forecast for temperature attribute on 10 January 2006. 

 

Fig. 4. Fuzzy weather forecast for humidity attribute on 10 January 2006. 

3.  PROPOSED FEATURES TO ESTIMATE THE QUALITY OF A FUZZY WEATHER FORECAST 

The first feature is research volume for all attributes i  in each hour Tt ∈ . We receive the first 
number tiF , characterised by numbers. 
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Let us define ti
i Ftf ,)( = for each Tt ∈ . In Figs 5, 6, 7 the integral of functions ti,µ for all Tt ∈ and for 

the chosen attributes i  are shown using real meteorological situations: wind speed, temperature and 
humidity. In Fig. 8 fuzzy weather forecast is shown for all attributes. 
 

 

Fig. 5. if for wind speed attribute on 10 January 2006. 

 

Fig. 6. if for temperature attribute on 10 January 2006. 

 

Fig. 7. if for humidity attribute on 10 January 2006. 
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Fig. 8. if for all attributes on 10 January 2006. 

For each ti,µ  it is the grade of membership of x .  

The second feature is researching the quality of a fuzzy weather forecast by comparing it to a real 
meteorological situation. In this way we keep an attribute characterised by a grade of membership for 
each hour. In Figs 9, 10, 11 grades of membership for wind speed, temperature and humidity are shown.  

 

Fig. 9. The grade of membership ti,µ for wind speed attribute and 72=T on 10 January 2006. 

 

Fig. 10. The grade of membership ti,µ for temperature attribute and 72=T on 10 January 2006. 
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Fig. 11. The grade of membership ti,µ for humidity attribute and 72=T on 10 January 2006. 

On the basis of the received sets of features, in section 4 we propose several indices which describe the 
qualities of the weather forecast. These will represent distinctness, precision and its credibility. 

4.  MODEL CONTROL 

The APFM is controlled by three parameters which have a fundamental influence on forecasting. 

These parameters are: k  for distance (2), ε  and η . Distance ( ) fT dn
kkd ×+1 depends on the coefficient k which 

has influence on which weather forecasts will be chosen. The ε  parameter determines how many 
meteorological situations will be chosen in the first stage and the η  parameter indicates how many 

aerosanitary situations will be chosen in the third stage. All the parameters can be changed independently 
from each other, but each of them has a considerable impact on the model. 
 
In particular parameters k  and ε  have an influence on the quality of fuzzy weather forecast ∗φ . 

 

Fig. 12. Pollution concentration runs: time series using methods (8), (9) using distance (2) with 1.0=k  
 and real time series on 9 January 2006. 
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Fig. 13. Pollution concentration runs: time series using methods (8), (9) using distance (2) with 2=k  
and real time series on 9 January 2006. 

In Figs 12, 13 we show representatives graphs which have been chosen from dozens experimental 
results. 

Experiments showed that the results for distance (2) with 1.0=k and 2=k  are different. On the 
selection of the set of similar weather forecasts their symmetrical difference is not equal to 0 . In Fig. 12 
we can observe that for a low value of k  we have better results than for the big ones. 

Thanks to the parameter ε  we receive a set )( *fWF−ε . In Fig. 14 we can see that the set of 

similar weather forecasts is too small when its cardinality is 5. The set of similar weather forecasts is too 
big when its cardinality is 20. This has an important influence on forecasting. The optimal number of 
elements in the set FMS−ε is about 10. Too many variable samples have the effect that for attribute i  in 
each hour Tt ∈ , 

ti
m

,1  is more distant from 
ti

m
,2 , which causes greater fuzziness. And this has an influence 

on the inaccuracy of the pollution concentrations forecast. This can be seen in Fig. 15. 

 

Fig. 14. Pollution concentrations runs: time series using methods (8), (9) using 5=ε  and real time series on 9 January 2006. 
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Fig. 15. Concentration pollution runs: time series using methods (8), (9) using 10=ε and real time series on 9 January 2006. 

Through parameter η  we receive MS−η  which we use to forecast pollution concentrations in the 
fourth stage. In Fig. 16 we can see that 10=η  have too small influence on final time series and notably 
wander away from this final time series. The bigger η  the better, the optimal cardinality of the set 

MS−η  is about 20. This can be seen in Fig. 17. 

 

Fig. 16. Pollution concentration runs: time series using methods (8), (9) using 10=η and real time series on 9 January 2006. 

 

Fig. 17. Pollution concentration runs: time series using methods (8), (9) using 20=η and real time series on 9 January 2006. 

5.  CONCLUSIONS 

Computations were performed for weather forecasts in 2003-2007, meteorological situations in 
1997-2007 and pollution concentrations in 1998-2007 with 1=∆t . We have 28=fd attributes 

describing weather forecasts, while the number of meteorological situations was equal to 9=sd . 

Attributes describing meteorological situations were chosen based on investigations by [24]. The effect of 
the suggested method for the prediction of a weather forecast was introduced for data from COSMO LM 
model, but the same method can be used for different weather forecasts based on numerical models. The 
condition which has to be met is to have real meteorological data.  
In Figs 2, 3, 4 the fuzzy weather forecasts are clearly and explicitly shown and it can be seen that the 
fuzzy weather forecast has a little fuzziness when the grade of membership is large. It is described for 
single indicators: fuzziness average and grade of membership average in Tabs 1, 2. By analysing other 
examples, a fairly significant dependence between small fuzziness and membership can be observed a 
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reverse correlation between them, because if the fuzziness is greater then the accuracy of the prognosis is 
minor. 
Analyzing the influence of a fuzzy weather forecast for the fourth stage in APFM, it can be determined 
whether the fuzzy average is minor and the grade of membership average is minor in Tab. 2, forecasting 
pollution concentrations is not precise enough or fuzzy average is minor and the grade of membership 
average is large in Tab. 1, forecasting pollution concentrations is more precise. 

Table 1. Results of the tests for attributes: wind speed, temperature and humidity on 9 January 2009. 

Attribute Fuzzy average Grade of membership average 
Wind speed 0.31 0.69 
Temperature 15.10 0.16 
Humidity 19.49 0.10 

Table 2. Results of the tests for attributes: wind speed, temperature and humidity on 10 January 2009. 

Attribute Fuzzy average Grade of membership average 
Wind speed 0.25 0.75 
Temperature 18.39 0.07 
Humidity 21.01 0.02 
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