Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem raised in this article is the selection of the most important components from multispectral images for the purpose of skin tumor tissue detection. It occured that 21 channel spectrum makes it possible to separate healthy and tumor regions almost perfectly. The disadvantage of this method is the duration of single picture acquisition because this process requires to keep the device very stable. In the paper two approaches to the problem are presented: hill climbing strategy and some ranking methods.
Rocznik
Tom
Strony
303--308
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
autor
Bibliografia
- [1] FAYAD U.M., IRANI K.B., Multi-interval discretization of continuousvalued attributes for classification learning, Thirteenth International Joint Conference on Articial Intelligence, 1993, pp. 1022-1027.
- [2] GINI C., On the measurement of concentration and variability of characters, METRON - International Journal of Statistics, Vol. LXIII, No. 1, 2005, pp. 3-38.
- [3] GINI C., Variabilit`a e mutabilit`a, 1912, Reprinted in Memorie di metodologica statistica (Ed. PIZETTI E., SALVEMINI T.), Rome: Libreria Eredi Virgilio Veschi, 1955.
- [4] HOLTE R.C., Very simple classification rules perform well on most commonly used datasets, Machine Learning Vol. 11, No. 1, 1993, pp. 63-90.
- [5] MICHALAK M., ŚWITOŃSKI A., Kernel postprocessing of multispectral images, Computer Recognition Systems 4, AISC 95, Springer, 2011, pp. 395-401.
- [6] MICHALAK M., ŚWITOŃSKI A., Spectrum evaluation on multispectral images by machine learning techniques, BOLC L. et al. (Eds.): ICCVG 2010, Part II, LNCS 6375, Springer-Verlag Berlin Heidelberg, 2010, pp. 126-133.
- [7] MITCHELL T.M., Machine Learning, The McGraw Hill, 1997.
- [8] NISBET R., ELDER J., MINER G., Handbook of statistical analysis and data mining applications, Academic Press, 2009.
- [9] PFAHRINGER B., Compression-Based Discretization of Continuous Attributes, Proc. of the 12th Int. Conf. on Machine Learning, 1995, pp. 456-463.
- [10] PLACKETT, R.L., Karl Pearson and the Chi-Squared Test, International Statistical Review, Vol. 51, No. 1, pp. 59-72.
- [11] STEIN C., A two-sample test for a linear hypothesis whose power is independent of the variance, The Annals of Mathematical Statistics, Vol. 16, No. 3, 1945, pp. 243-258.
- [12] ŚWITOŃSKI A., MICHALAK M., JOSIŃSKI H., WOJCIECHOWSKI K., Detection of tumor tissue based on the multispectral imaging, BOLC L. et al. (Eds.), ICCVG 2010, Part II, LNCS 6375, Springer-Verlag Berlin Heidelberg, 2010, pp. 325-333.
- [13] WEISS S.M., Indurkhya N., Predictive data mining: a practical guide, The Morgan Kaufmann Series in Data Management Systems, 1997.
- [14] WITTEN I., Frank E., Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2005.
- [15] ZHU W., Wang X., Ma Y., Rao M., Glimm J., Kovach, J.S., Detection of cancerspecific markers amid massive mass spectral data, Proceedings of the National Academy of Sciences of the United States of America, 100(25), 2003, pp. 14666-14671.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0016-0036