PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer-aided diagnosis of breast cancer using gaussian mixture cytological image segmentation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an automatic computer system to breast cancer diagnosis. System was designed to distinguish benign from malignant tumors based on fine needle biopsy microscope images. Studies conducted focus on two different problems, the first concern the extraction of morphometric and colorimetric parameters of nuclei from cytological images and the other concentrate on breast cancer classification. In order to extract the nuclei features, segmentation procedure that integrates results of adaptive thresholding and Gaussian mixture clustering was implemented. Next, tumors were classified using four different classification methods: k–nearest neighbors, naive Bayes, decision trees and classifiers ensemble. Diagnostic accuracy obtained for conducted experiments varies according to different classification methods and fluctuates up to 98% for quasi optimal subset of features. All computational experiments were carried out using microscope images collected from 25 benign and 25 malignant lesions cases.
Rocznik
Tom
Strony
257--262
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Bibliografia
  • [1] AL-KOFAHI Y., LASSOUED W., LEE W., ROYSAM B., Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images, IEEE Trans. on Biomedcial Engineering, Vol. 57, No. 4, 2010, pp. 841-852.
  • [2] BISHOP C., Pattern recognition and machine learning, Springer, New York, 2006.
  • [3] BREIMAN L., FRIEDMAN J., STONE C.J., OLSHEN R.A., Classification and Regression Trees, Chapman & Hall, Boca Raton, 1993.
  • [4] DEMPSTER A.P., LAIRD N.M., RUBIN D.B., Maximum Likelihood from Incomplete Data via the EM Algorithm, J. the Royal Statistical Society, Series B (Methodological), Vol. 39, No. 1, 1977, pp. 1–38.
  • [5] FILIPCZUK P., KOWAL M., MARCINIAK A., Feature selection for breast cancer malignancy classification problem, J. Medical Informatics & Technologies, Vol. 15, 2010, pp. 193-199.
  • [6] GIL J., WU H., WANG B.Y., Image analysis and morphometry in the diagnosis of breast cancer, J. Microsc. Res. Tech., Vol. 59, 2002, pp.109-118.
  • [7] GONZALEZ R.C., WOODS R.E., Digital Image Processing, Prentice Hall, New Jersey, 2001.
  • [8] GUPTA M.R., CHEN Y., Theory and Use of the EM Algorithm, Foundations and Trends in Signal Processing, Vol. 4, No. 3, 2010, pp. 224-292.
  • [9] GURCAN M.N., BOUCHERON L.E., CAN A., MADABHUSHI A., RAJPOOT N.M., YENER B., Histopathological Image Analysis: A Review, IEEE Reviews in Biomedical Engineering, Vol. 2, 2009, pp. 147-171.
  • [10] HREBIEŃ M., STEĆ P., OBUCHOWICZ A., NIECZKOWSKI T., Segmentation of breast cancer fine needle biopsy cytological images, Int. J. Appl. Math and Comp. Sci., Vol. 18, No. 2, 2008, pp. 159–170.
  • [11] HUANG H.K., PACS and Imaging Informatics: Basic Principles and Applications, John Wiley & Son, New Jersey, 2010.
  • [12] HUNTER D.R., LANGE K., A Tutorial on MM Algorithms, The American Statistician, Vol. 58, 2004, pp. 30-37.
  • [13] JELEŃ Ł., FEVENS T., KRZYŻAK A., Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, Int. J. Appl. Math and Comp. Sci., Vol. 18, No. 1, 2008, pp. 75–83.
  • [14] JELEŃ Ł., FEVENS T., KRZYŻAK A., JELEŃ M., Discriminatory Power of Cells Grouping Features for Breast Cancer Malignancy Classification, Proc. 4th Int. Conf. on Biomedical Engineering, Kuala Lumpur, 2008, pp. 559-562.
  • [15] KAWA J., PIĘTKA E., Image Clustering with Median and Myriad Spatial Constraint Enhanced FCM, Proc. 4th Int. Conf. on Computer Recognition Systems CORES' 05, Springer, 2005, pp. 211-218.
  • [16] KOWAL M., KORBICZ J., Segmentation of breast cancer fine needle biopsy cytological images using fuzzy clustering, in: KORNACKI J., RAŚ Z., WIERZCHOŃ S.T., KACPRZYK J., (eds.), Advances in Machine Learning I, Springer-Verlag, Berlin – Heidelberg, 2010, pp. 405-417.
  • [17] MARCINIAK A., OBUCHOWICZ A., MONCZAK R., KOŁODZIŃSKI M., Cytomorphometry of Fine Needle Biopsy Material from the Breast Cancer, Proc. 4th Int. Conf. on Computer Recognition Systems CORES' 05, Springer, 2005, pp. 603-609.
  • [18] MCLACHLAN G., PEEL D., Finite Mixture Models, John Wiley & Sons, 2000.
  • [19] MITCHELL T.M., Machine Learning, McGraw-Hill, 1997.
  • [20] NEZAFAT R., TABESH A., AKHAVAN S., LUCAS C., ZIA M., Feature selection and classification for diagnosing breast cancer, Proc. Int. Assoc. of Science and Technology for Development International Conference, Cancun, Mexico, 1998, pp. 310–313.
  • [21] OBUCHOWICZ A., HREBIEŃ M., NIECZKOWSKI T., MARCINIAK A., Computational intelligence techniques in image segmentation for cytopathology, in: SMOLIŃSKI T.G., MILANOVA M.G., HASSANIEN A.G. (eds.), Computational intelligence in biomedicine and bioinformatics: current trends and applications, Springer-Verlag, Berlin, 2008, pp. 169-199.
  • [22] OTSU N., A threshold selection method from gray-level histograms, IEEE Trans. Sys. Man. and Cyber. Vol. 9, 1979, pp. 62-66.
  • [23] PENG Y., PARK M., XU M., LUO S., JIN J.S., CUI Y., WONG F.W.S., SANTOS L.D., Clustering nuclei using machine learning techniques, Proc. Int. IEEE/ICME Conf. on Complex Medical Engineering, 2010, pp. 52-57.
  • [24] SCHNORRENBERG F., PATTICHIS C., KYRIYRIACOU K., SCHIZAS C., Detection of cell nuclei in breast cancer biopsies using receptive fields, IEEE Proc. Engineering in Medicine and Biology Society, 1994, pp. 649–650.
  • [25] SEZGIN M., SANKUR B., Survey over image thresholding techniques and quantitative performance evaluation, J. Electronic Imaging Vol. 13, No. 1, 2003, pp. 146–165.
  • [26] STREET N., Xcyt: A system for remote cytological diagnosis and prognosis of breast cancer, In Jain L. (eds.), Soft Computing Techniques in Breast Cancer Prognosis and Diagnosis, World Scientific Publishing, Singapore, 2000, pp. 297–322.
  • [27] SURI J.S., SETAREHDAN K., SINGH S., Advanced Algorithmic Approaches to Medical Image Segmentation, Springer-Verlag, London, 2002.
  • [28] ŚMIETANSKI J., TADEUSIEWICZ R., ŁUCZYŃSKA E., Texture Analysis in Perfusion Images of Prostate Cancer - a Case Study, Int. J. Appl. Math and Comp. Sci., Vol. 20, No. 1, 2010, pp. 149-156.
  • [29] UNDERWOOD J.C.E., Introduction to biopsy interpretation and surgical pathology. Springer-Verlag, London, 1987.
  • [30] WOLBERG W.H., STREET W.N., MANGASARIAN O.L., Breast cytology diagnosis via digital image analysis. Analytical and Quantitative Cytology and Histology, Vol. 15, 1993, pp. 396–404.
  • [31] XU L., JORDAN M.I., On Convergence Properties of the EM Algorithm for Gaussian Mixtures, Neural Computation, Vol. 8, 1996, pp. 129–151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0016-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.