PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoacoustic detection of sentinel lymph node with sensor arrays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cancer is one of the diseases which cause the highest death rate in XXI century. However, through years techniques and equipment used to fight with this disease improved there are still many opportunity to get better results. Nowadays, the attention is focused on precise cancerous cells place estimation. It is important for effective cancer treatment, but also it allows diminishing the unwanted effects as destruction of healthy cells. One of the promising techniques in obtaining better spatial and temporal resolution of the internal of the human body is the photoacoustic imaging. Combination of the acoustics, ultrasounds or microwaves by the set of ultrasonic detectors can lead to estimation of the localization of the sources of the waves. The work presents the utilization of the multiple signal classification (MUSIC) algorithm in estimation of angle and distance of microwave or photoacoustic waves sources. The technique presented in the work allows for better prediction of localization of the sources of the detected waves by the sensors array. The proposed application of his technique is detection of sentinel lymph nodes.
Rocznik
Tom
Strony
233--238
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Lublin University of Technology, Institute of Computer Science, Nadbystrzycka 36B, 20-618 Lublin, Poland
Bibliografia
  • [1] HELM. E, Nanotechnology may replace existing treatments for cancer, Eukaryon, Vol. 3, Lake Forest College, 2007, pp. 55-62.
  • [2] World Health Organization (WHO) cancer factsheet, Available online at: http://www.who.int/mediacentre/factsheets/fs297/en/, July 2011.
  • [3] TNM classification of malignant tumors, available online at: http://www.uicc.org/tnm, July 2011.
  • [4] WEIZENECKER J., GLEICH B., RAHMER J. DAHNKE H., BORGERT J., Three-dimensional real-time in vivo magnetic particle imaging, Phys. Med. Biol. Vol. 54, 2009, pp. L1-L10.
  • [5] GLEICH B., WEIZENECKER J., Tomographic imaging using the nonlinear response of magnetic particles, Nature letters, Vol. 435, 2005, pp. 1214-1217.
  • [6] PAN D., PRAMANIK M., SENPAN A., GHOSH S., WICKLINE A., WANG L., LANZA G.M., Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons, Biomaterials, Vol. 31, 2010, pp. 4088-4093.
  • [7] QU M., MALLIDI S., MEHRMOHAMMADI M., TRUBY R., HOMAN K., JOSHI P., CHEN YS. SOKOLOV K., EMELIANOV S., Magneto-photo-acoustic imaging, Biomedical optics express, Vol2, No. 2, 2011, pp. 385-395.
  • [8] MEHRMOHAMMADI M., OH J., YANTSEN E., LARSON T., MALLIDI S., PARK S, JOHNSTON K.P., SOKOLOV K., MILNER T., EMALIANOV S., Imaging of iron oxide nanoparticles using magneto-motive ultrasound, IEEE Ultrasonics Symposium, 2007, pp. 652-655.
  • [9] CHOI J.W., CHO J., LEE Y., YIM J., KANG B., OH K.K., JUNG W.H., KIM H.J., CHEON C., LEE H. KWON Y., Microwave detection of metastasized breast cancer cells in the lymph node; potential application for sentinel lymphadenectomy, Breast cancer research and treatment, Vol. 86, Netherlands, 2004, pp. 107-115.
  • [10] OH J., FELDMAN M.D., KIM J., CONDIT C., EMALIANOV S., MILNER T.E., Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound, Nanotechnology, Vol. 17, 2006, pp. 4183-4190.
  • [11] QU M., KIM S., MEHRMOHAMMADI M., MALLIDI S. JOSHI P., HOMAN K., CHEN YS., EMELIANOV S., Combined photoacoustic and magneto-motive ultrasound imaging, Phtons plus ultrasound: imaging and sensing, Proc of SPIE, Vol 7564, 2010, pp. 756433-1 – 756433-6.
  • [12] HUANG Y., BARKAT M., Near-field multiple source localization by passive sensor array, IEEE Transactions on antennas and propagation, Vol. 39, No. 7, 1991, pp. 968-975.
  • [13] MOSHER J.C., RYNNE T.M., LEWIS P., MUSIC for localization of thunderstorm cells, Signals Systems and Computers, Pacific Grove, 1993, pp. 986-990.
  • [14] BÖHME J., Source-parameter estimation by approximate maximum likelihood and nonlinear regression, IEEE Journal of oceanic engineering, Vol. OE-10, No. 3, 1985, pp. 206-212.
  • [15] SCHMIDT R., Multiple emitter location and signal parameter estimation, IEEE Transactions on antennas and propagation, Vol. AP-34, No. 3, 1986, pp. 276-280.
  • [16] SCHMIDT R., FRANKS R., Multiple Source DF signal processing: an experimental system, IEEE Transactions on antennas and propagation, Vol. AP-34, No. 3, 1986, pp. 281-290.
  • [17] WAX M., KAILATH T., Detection of signals by information theoretic criteria, IEEE Transactions on acoustics, speech and signal processing, Vol. ASSP-33, No. 2, 1985, pp. 387-392.
  • [18] ZISKIND I., WAX M., Maximum likelihood localization of multiple sources by alternating projection, IEEE Transactions on acoustics speech and signal processing, Vol. 36, No. 10, 1988, pp. 1553-1560.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0016-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.