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CONCEPTUAL IMPROVEMENTSIN COMPUTER-AIDED DIAGNOSI S OF
ACUTE STROKE

This work presents some conceptual improvemerassistance of acute stroke diagnosis with Strokeifdio—
computer-aided diagnosis tool developed and eladbry Telemedicine Group from Institute of Radémgtonics,
Warsaw University of Technology. Based on statidtanalysis of common error sources we proposec sdeas of
improvement capabilities for false positive erroesluction. Simulation and experimental verificatioanfirmed
validity of further development directions.

1. INTRODUCTION

Stroke (according to WHO) is the clinical syndrooferapid onset of focal, or sometimes global,
cerebral deficit with a vascular cause, lastingertbian 24 hours or leading to death. It is the Gesise
of disability and one of the leading causes of aldyt (third major reason of death after cardiad an
oncologic diseases) [2]. CT remains the methodhoice for the evaluation of patients with suspected
acute stroke. It provides a relatively quick wayeatluding conditions that may mimic ischemic s&ok
and may require a different treatment approachyEasessment of irreversible injury of brain tessis
exceedingly important because of the recent adeénhrombolytic therapy [12]. Compared to MR,
brain imaging with CT is more accessible, less agpe, quicker and more reliable, especially in
severely ill patients. Although a CT image of thiaib in acute stroke patients is not difficult &ad, it is
rather not self-evident. Reading of CT needs trgirand instructions, how to recognize anatomy and
pathology, combined with knowledge about the phalstonditions of image contrast. In the furthertpar
of this introduction we present some common diffies concerning reading of early CT examinations
and briefly introduce the conception of stroke nanutilized as a computer-aided diagnosis tool for
acute ischemic stroke diagnosis.

1.1.CT IMAGING OF ACUTE STROKE

Generally, there is need to examine a stroke pgatveh CT as soon as possible. A typical sign of
acute infarction on CT is hypodense area withiefinéd arterial supply territory due to respectivager
content increase - increase by 1% means CT atienwdgcreases by 2-3 HU (Hunsfield Unit) [11]. Farl
attenuation changes corresponding to irreversibmabed brain tissue may vary within the limitedgean
of HU scale (typically up to 10 HU) depending omet®al infarct case, discrepant patient charactesis
non-optimum scanning and acquisition conditionirigoreover, early indirect findings, such as
obscuration of gray/white matter differentiatiordagffacement of sulci or “insular ribbon sign” miag
additionally noticed. However, subtle visual chasgee often masked due to artifacts, noise and othe
tissue abnormalities. In effect, during the hypataghase of stroke (up to 6h after symptom onset),
a hypodense area as direct infarct sign is not aglined or contrasted (with low gradient, ill ohefd
margins) and indirect findings become imperceptitdee Fig. 1). In consequences, many infarctsodo n
emerge on CT even until many hours after the aofsetiroke - about 50-60% of stroke cases have norma
CT even before 12h after stroke onset [5]. Thus&sge of computer-aided diagnosis (CAD) suppmort t
extract subtle ischemic signs was considered [1,3].
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Fig. 1. CT successive scans in a patient with isahetroke: 11h after stroke onset, without anyhlsichanges (1-4 from left);
4 days after the onset with clearly visible - irsd&d with arrows - hypodense area (5-8 from left).

1.2. STROKE MONITOR

Stroke Monitor (SM) [9] is a computer tool suppogiacute ischemic stroke diagnosis. Emergency
noncontrast, routine CT scans are enhanced toasereisibility of hypodensity changes in hyperacute
ischemic stroke cases. The processing algorithr8Mfis based on multiscale image data processing,
denoising, lesion pattern identification and dgsgan, and final extraction optimized by visualipat
procedure. Essentially the main algorithm condishiee successively performed steps:

a) image segmentation, aimed at selection of diagnd®DIs - stroke-susceptible regions of brain
tissues, containing:

* the brain extraction (deskulling) to remove nonibrassue (based on region growing
procedure),

» selection of the only tissue regions which are spsble to ischemia by rejection of clear
brain sulci, prior ischemic scars and other stmgswseless in acute stroke detection.

b) hypodensity extraction, which as an essential stagariented at subtle signs mining through
following operations:

* smooth complement of segmented diagnostic ROIs migan values of neighbor areas
providing the continuity of density function andsabce of any lower density fields,

* multiscale transformations and nonlinear processingording to different procedures
(wavelets, curvelets and their joint combinationthvadaptive modeling across scales and
subbands),

» brain tissue mapping to source CT scans space anging with background view of the
scans.

c) visualization of diagnostic image content:

» display arrangement with contrast enhancement laptac histogram equalization of
processed data in brain tissue area,

» alternative and complementary view of image datewgssed according to four multiscale
procedures.

More detail description of SM algorithm and conoapis reported more exhaustively in [6-10].

Combining the effects of standard CT scans revieh M assistance may led to a better
diagnosis of stroke. Stroke Monitor provide a neamantic-visualization system of empowered
hypodensity symptoms, realized according to elakdrand optimized four different forms of multiseal
processing, localizes suggested ischemic areasurces brain image space. Observation of suggestive
ischemic density changes occurrence combined vatkelation analysis of their localization related t
clinical manifestation, made image content assest@aued interpretation more accurate and simple. A
good example of different semantic-visualizatiomre (semantic maps) of SM were presented in Fig. 2.

Fig. 2. The effects of SM assistance for strokgmuiiesis (from left): view of CT scan, enhanced vigipbf diagnostic ROI with segmented
unusual areas (white), four visualization form$df, follow up CT and DWI with indicated visible isemic changes.
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1.3.WORKING WITH STROKE MONITOR

Aiding routine interpretation procedure with SM @s®s exploiting of additional knowledge
concerning localization and spacing of brain tissypoattenuation in susceptible to ischemia teigt
This knowledge is contained in SM semantic mapsrevtageas with diverse density, especially with
density lower than normal surrounding brain tissaes much more clearly recognizable due to imptove
perception of subtle tissue density distributions$tble presence of ischemic region with local rbrai
tissue hypoattenuation expresses itself with nabtee disorder in lower tissue density distribution
symmetry. The presence and localization of the asgtric hypodense signs should be verified reladed t
segmentation results (to avoid diagnosis of inailyesegmented prior ischemic scars and other
structures useless for stroke diagnosis), climecahifestation and other available domain knowlelge
disease and imaging modality conditioning).

The potential gain is due to the synergistic effebtained by combining the radiologist’s
competence and the computer’s capability. Compmuggestions can be applied by radiologists, byt the
cannot replace their judgment. Thus convincing catepaid could be really useful for reliable suppdr
the diagnosis for hyperacute cases.

As a matter of fact, SM was realized as a standabpplication written in C/C++ with DICOM
viewer functionality, capable to work in standartBRACS environment. Image review procedure of
regular CT scans is synchronized in visualizationtie same number of images obtained by SM
processing. These results are displayed at additdbagnostic view, independently form basic diagjimo
station visualization. In spite of four complemegt&M semantic maps of brain tissue hypoattenuation
distribution, SM interface provides also additiom&ualization of segmentation results togethemhwit
corresponding preview of original CT data.

1.4. STROKE MONITOR EFFICIENCY

Stroke Monitor efficiency was repeatedly verifiecperimentally during last few years of ongoing
algorithm development and optimization. The latesults were obtained on large group of 95 patients
admitted to a hospital with symptoms suggestingkstr In this group no direct hypodense signs of
hyperacute ischemia were found on initial nonenbdn€T examinations of the head within first hours
from stroke onset (average time between the orisstnoptoms and the CT examination was 4.48 hours).
Retrospective image review was performed indepdhdesmt a diagnostic workstations of two
radiological centers by four blinded neuroradiostg) experienced in the interpretation of stroke CT
images in two configurations: without CAD and wi@AD. Analysis of ROC curves indicates that SM
had statistically significant, positive impact ortekction of stroke for all radiologists participegi
experimental evaluation of diagnosis performanesas8ivity and specificity of acute stroke detentior
the readers was increased by 30% and 4%, respgctBig improved level of sensitivity was only 50%
(with specificity up to 80%). More detail analysisSM efficiency can be found in [10].

Although experimental verification of the SM confied its diagnostic usefulness, some algorithmic
and procedural limitations still exist. Only a hafftest stroke cases was detected what meansestl
limited diagnostic efficiency. Further optimizatioequires detailed analysis of common processirgser
and their sources. Analysis of human and computer eauses leads to conceptual verification of
assumed computer assistance procedure.

2. ANALYSIS OF STROKE MONITOR EFFICIENCY

The main goal of presented considerations was &atos identification, analysis and explanation
of the nature and causes of common mistakes madadwylogists using SM. Detailed and reliable
exploration of these mistakes demonstrated andesgpd weak points of SM-oriented diagnostic
procedure. Results of this analysis allow formuigtigeneral and particular directions for further
computer-assistance concept development.
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2.1.SELECTION AND ANALYSIS OF FALSE POSITIVE CASES

For that purpose of SM efficiency analysis we apedlyresults of different test and verification
procedures performed on dataset of about 100 ahs@sg ongoing process of SM development and
optimization. All studies were reviewed by severdiobgists with diversified experience in the
interpretation of stroke CT images. Finally we stdd 13 cases which turned out to be sources s fal
positive (FP) indications, to verify whether SM @unfavorably affect this decision.

At the beginning all selected studies and testlt®suere reviewed and confronted in order to
determine real number of all independent, diffefaige positive indications across all cases a$ agel
their incidence related to total number of casestatal number of FP. Finally this gave us totamter
of 23 standalone false positive errors indicatettpendently by all radiologists 29 times. Detaglgsis
is presented in part | of Tab. 1.

Table 1. Statistics of FP errors for selected Li8iss. Used abbreviations: case ID — case ideatiifio signature; NR_FP — number of
radiologist who made FP in each case; case_FPTiNnber of independent FP per each case; case_FRNatwse of independent FP in
each case; NR_case_FPN — number of radiologist vaderepecific case_FPN in each case; case_FPN_tymamon error type for
specific case_FPN in each case.

case ID NR_FP case_FPTN case_FPN | NR_case_FPN case_FPN_type
case3 1 1 FP1 1 1
case53 1 1 FP1 1 3,4
casell0 1 1 FP1 1 5
FP1 1 1,3,4
casell2 2 2 Fp2 1 12,3
FP1 1 5
casell3 2 2 = a 13
FP1 1 1,3,4
caselld 2 2 55 1 134
casel20 1 1 FP1 1 5
FP1 1 2,4
FP2 2 1,3
casel2l 6 4 FP3 1 E
FP4 2 5
casel22 1 1 FP1 1 5
FP1 2 1,3
casel4d? 5 3 FP2 2 3
FP3 1 1
FP1 1 3,4
caseld? 2 2 = i 13
FP1 3 1,3
casel57 4 2 P2 1 13
casel64d 1 1 FP1 1 1,2,3
13| 2 2 x|

2.2.REASONS OF COMMON ERRORS

Next all 29 FP indication were analyzed in ordeestablish and indicate possible sources of FP
decisions. Based on that analysis we formulatedoSsiple reasons of common errors made by
radiologists using SM as a CAD tool. Moreover thean exists and influence the review process
separately or jointly, forming complex cause arfdafrelationship.

2.2.1. IMPERFECT SEGMENTATION (TYPE 1)

First common reason of FP indications is conneutikd imperfect segmentation process. Clearly
noticeable low-density brain structures (e.g. subeior ischemic scars, chambers, gurus) are net th
subject of interest and should be omitted from @ssing. Unsegmented or partly-segmented compose
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false areas of evident hypoattenuation, which becaspecially clearly visible after SM processing.
Example segmentation errors are presented on Fig. 3

Fig. 3. Example of imperfect segmentation influeoneSM indications. From left: original image, segmation results, two forms of SM
visualization. White arrows indicate unsegmenteddiiar ribbon and corresponding false indications.

2.2.2. BRAIN STRUCTURE ASYMMETRY (TYPE II)

Norman human brain is nearly symmetrical. Presasfcstroke (ischemic region) disturb brain
tissue density locally (produce a hypoattenuatioga)p This local disorder in normal tissue density
symmetry (normal brain symmetry) is extracted amda@ced by SM processing algorithm. Specific form
of SM visualization project this information intour simplified forms of tissue density semantic sjap
which much more clearly represent tissue densgyridution. Unfortunately many times non-optimum
scanning and acquisition conditions (e.g. patiesymanetry) result in brain structures asymmetry in
successive frames. SM is very sensitive for an fofrasymmetry. Even such a technical imperfection,
which lead to natural form of tissue density asynmnecan be captured, enhanced and thus sometime:
easily misinterpret. Suggestive examples are ptedem Fig. 4.

2.2.3. LACK OF SLICE-TO-SLICE CORRELATION (TYPE IlI)

Generally Stroke Monitor processing algorithm warkependently frame by frame across whole
CT volume. Standard interpretation process alsonagssuccessive frames analysis. Even though stroke
area most often covers considerable part of btaia.well-founded to assume that hypodensity cleang
should be visible consequently on few followingcef. Moreover these changes should be correlatec
according to their size and localization. Reviewogaedure should thus always take into account
slice-to-slice correlation of local ischemic finds Singular, uncorrelated changes on SM visuaizat
maps should be considered as not much reliabls@ametimes casual. Examples are presented on Fig. 5.

2.2.4. ARTIFACTS AND DIFFICULT LOCALIZATIONS (TYPE 1IV)

Sometimes non-optimum scanning and acquisition itond (e.g. patients movement) result in
characteristic and unpleasant artifacts like bond amovement artifacts. These artifacts are often
localized and present in relatively small and dasgically difficult cerebellum region. As a result
common false indication can be observed (see Fig. 6

Fig. 4. Example of false indication (see white as®n image 3 and 4) due to brain structure asynymghis asymmetry is much more
clearly seen on other slices (white arrows indieatéent brain structures asymmetry on images 5@&m left we can see original image,
segmentation results, two forms of Stroke Monitsualization maps, two other slices and their segai®n results.
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Fig. 5. Examples of unreliable indications duesatckl of slice-to-slice correlation. From left we canoriginal image, segmentation results
and two forms of SM visualization maps. White arsdndicate two independent false positive indigzi¢made separately by two
radiologist) on adjacent slices. We can see thairkications are standalone and do not correlitteeach other. It is worth to notice that

first false positive indication is also a resultmperfect segmentation (see white arrows on setatien result image).

Fig. 6. Example of false positive indication (whiteows) as a result of strong artifacts coveriragydostically difficult cerebellum region.
From left: original image, segmentation, two forofisSM visualization.

2.2.5. UNFORCED AND UNEXPLAINED ERRORS (TYPE V)

The last group of typical errors reasons concefforaad and unexplained errors. Sometimes false
positive indications occur as a result of radiadbgionfidence to their own knowledge and experience
Their conviction of possible stroke indication i®lpably based on some early indirect findings. €hes
suspicions are not confirmed be SM so we classify érrors as unforced. From the other hand we can
also find cases where SM gives quite clear indicatf possible ischemia in region where in facadet
review procedure reveal some subtle obscuratiobraih tissue. Although SM suggestion seems to be
reliable it won't find any confirmation in followjustudy. Examples are presented on Fig. 7.

2.3.COMMON ERROR STATISTICS

Based on presented above common error source cagggm we classified all 29 FP indications.
Each of them was labeled with the most appropmater source types. Detail common error sources
statistic is presented in second part of Tab. 1.

Fig. 7. First example shows false positive indimatisee white arrows on original image) based palgtan radiologist knowledge and
analysis of indirect stroke findings. From leftiginal image, segmentation results, two forms o068 monitor visualization. False
indication is not confirmed by SM. Second exampieves FP confirmed by SM indication (see white aspvAlthough this indication
corresponds to subtle obscuration of brain tisgsible on original image (indicated by white arrgwishas no confirmation
in follow-up study.

The most common reason (14 times) is type 1l egldd lack of slice-to-slice correlation. Similarly
frequent (11 times) is type | connected with impetfsegmentation. Moreover this two error reasons
occur also most often together (10 times) — thigymcal and common situation where imperfect
segmentation on single slice effects with lack lafesto-slice correlation in SM indications. OthEP
reasons occur less frequent — type Il (asymmetriinds and type IV (artifacts) 6 times. Type llldan
type IV occurs jointly 5 times. Six FP were clagsifas type V (unforced and unexplained).
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3. STROKE MONITOR ROADMAP

3.1.IMPROVED SEGMENTATION

Presented statistical results reveals weakness egimentation algorithm used in SM.
If segmentation results were better analyzed amgeleded with SM indications, much more false
indications would be avoided. The simplest way éduce FP is than to pay much more attention to
segmentation results images presented simultanemuSIM interface during standard review procedure.
Nevertheless it seems obvious that segmentatiaridgdg should be also improved for better automatic
operation. The relevance of segmentation improvérmes confirmed in experiment where for all
11 segmentation specific FP (type 1) we individyatapted segmentation algorithm parameters. This
way 8 FP indications were efficiently reduced (sgamples on Fig. 8). Although there is still prable
with automation and repeatability of such an adaptgrocedure this development direction seenitseto
well-founded.

3.2.SOFTENING ASYMMETRY INFLUENCE

Reliable assessment and arrangement of any forforash structure asymmetry index is quite
problematic. Nevertheless rational usage of suclndex can provide additional form of information
augmented standard review procedure during workirlg SM, capable of avoiding errors in especially
asymmetry cases. In Fig. 9. we present an idexbiing segmentation result as form of asymmetry
measure. Two consecutive slice show false SM itidica evolved as a result of brain structures
asymmetry. If we compare asymmetry of segmentaisults according to simulated brain symmetry
line (white lines on segmentation result imageghwwsymmetry of SM indications we can easily natice
existing correlation.

High sensitivity level for brain structures asymmeatan by also soften by exploiting advantages of
three dimensional multiscale processing. An attetopuse higher dimensional form of multiscale
transformation (e.g. 3D wavelets, 3D curvelets) nemmted with volumetric nonlinear modeling of
coefficients space seems quite promising.

Fig. 8. Two examples of segmentation improvemerdnHeft: original segmentation, FP indication (teharrows) on SM visualization,
improved segmentation and SM visualization — falskcations are efficiently reduced.

Fig. 9. lllustration of asymmetry measure basedegmentation result related to brain symmetry lfirem left: original image,
segmentation results with simulated brain symmigtgy(white line), two forms of SM visualizationxisting correlation between
segmentation asymmetry and SM indications asymniewivious.
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3.3.EXPLOITING SLICE-TO-SLICE CORRELATION

As it was mentioned above it is very importanekploit slice-to-slice correlation between Stroke
Monitor indications. This can be done in form ofrslard 2D review analysis where we can observe
adjacent slices related to suspicious SM indicatibany correlation related to localization andesiof
indications can be found we can assume higherbifjaof such an indication. Additional possibylit
simplifying slice-to-slice correlation analysis lie 3D visualization of relevant semantic infornoati
Introduction of additional 3D visualization formg M semantic maps, localized in standard SM review
interface would probably essentially facilitate lgss of volumetric, slice-to-slice correlations.
Suggestive example of such a 3D visualization @meg in MeVisLab environment [4]), which confront
spatially correlated TP stroke indications with amelated FP, is presented in Fig. 10.

4. CONCLUSIONS

Combining the effects of standard CT scans revieth \8M assistance used as a CAD tool
provided a better diagnosis of acute ischemic strokccording to all verification procedures and
opinions, SM semantic visualization improved thagtiosis of early ischemic changes because of
increased visibility and clarity of hypodense sigReliable display of hypodense signs can consldigra
accelerate the diagnosis of hyperacute ischenoketrecause of increased sensitivity. However deihe
indication were also noticed during verificatiorstee FP have to be avoided since treating ineggibl
patients with intravenous thrombolysis is assodiat@h an unacceptable risk of hemorrhage and death
Presented statistical analysis of common error cesumallowed to formulate some ideas for further
improvements, which can lead to limitation of FRigations. Proposed SM improvements ideas and their
simulation and experimental verification confirnliday of further SM development direction.

r"-!

Fig. 10. Example 3D visualization of SM semantiqoman the left side example successive slices ahtRation. High slice-to-slice
correlation between regions with asymmetricallydowssue density is clearly visible. On the rigitle example successive slices of FP
indication. Lack of correlation between suspici@chemic regions is evident.
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