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In the paper, the method of acoustic model complexity level selection for automatic speech recognition is 
proposed. Selection of the appropriate model complexity affects significantly the accuracy of speech recognition. For 
this reason the selection of the appropriate complexity level is crucial for practical speech recognition applications, 
where end user effort related to the implementation of speech recognition system is important. We investigated the 
correlation between speech recognition accuracy and two popular information criteria used in statistical model 
evaluation: Bayesian Information Criterion and Akaike Information Criterion computed for applied acoustic models. 
Experiments carried out for language models related to general medicine texts and radiology diagnostic reporting in CT 
and MR showed strong correlation of speech recognition accuracy and BIC criterion.  Using this dependency, the 
procedure of Gaussian mixture count selection for acoustic model was proposed. Application of this procedure makes it 
possible to create the acoustic model maximizing the speech recognition accuracy without additional computational 
costs related to alternative cross-validation approach and without reduction of training set size, which is unavoidable in 
the case of cross-validation approach. 

1. INTRODUCTION 

Automatic speech recognition (ASR) in the recent decade became an important tool in medical 
information systems, both as a method of entering texts into databases and as the utility to control medical 
devices and software with voice commands. Significant reduction of medical documentation preparation 
costs as a result of ASR implementation was reported [1,2]. Another advantage of ASR, particularly 
apparent in diagnostic imaging, is shortening of the report turnaround time, i.e. the time elapsed from the 
diagnostic examination to signing of the corresponding report by a doctor [3].  On the other hand 
however, the additional effort form medical staff necessary to begin efficient usage of ASR seems to be a 
prohibitive factor that restricts the popularity of ASR application in medicine [4].  

One of laborious steps that each ASR user is expected to carry out is recording of training 
utterances that will be used either as a basis for creation of individual speaker acoustic model or as the 
data for generic acoustic model (AM) adaptation. Our experiences show that in order to create a 
personalized speaker dependent model, it is necessary to collect at least a few hours of voice recordings 
[5]. In order to adapt the generic acoustic model, it is sufficient to gather just a few minutes of speaker 
voice samples. In both cases the speech samples used for AM creation should be used most effectively, so 
as to maximize the ultimate ASR accuracy. In this way, the end user effort necessary to start using ASR 
technology will be minimized, while still preserving relatively high recognition accuracy. 

Majority of approaches to ASR utilize Hidden Markov Model (HMM), [6-9] as a data structure 
used by the speech recognizer. Acoustic model in this case defines the probability density functions (pdfs) 
of observation vector emission in HMM states. The model complexity is determined by the number of 
distinguishable states and by the number of parameters used in the definition of pdfs. AM training 
consists in finding such parameter values in the acoustic model, which maximize the likelihood of 
observation vector sequences observed in recorded training utterances. Typical training method is Baum-
Welch procedure [6,7], which approximates maximal likelihood parameter estimation.  

The common property of modeling for the sake of pattern recognition is that the model complexity 
affects the effectiveness of training and in result - the final accuracy of the speech recognizer. When the 
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model complexity is too low it is not possible to fit the model to actual (unknown) distribution of 
observations (features). On the other hand, application of the model with high level of complexity usually 
leads to overfitting to training data. The recognizer recognizes perfectly items from the training set but 
lacks generalization, i.e. items out of the training set are recognized poorly. In general, the model 
complexity is defined by the number of parameters which values are adjusted in the training process. In 
case of HMM applied to ASR, the parameters adjusted in the process of training are mean values and 
variances of multivariate Gaussian pdfs used to model observation vector distributions in states. In order 
to model the observation distributions more precisely, Gaussian mixture models (GMMs) are applied in 
many software packages supporting ASR [8,9]. One of ways to control the acoustic model complexity is 
to set the number of components in GMMs.  

In the works presented in this paper we investigate how the number of Gaussian mixture 
components in acoustic models for ASR influences the accuracy of the speech recognition. The aim is to 
elaborate the method of determination of GMM components count which maximizes the accuracy. The 
trial-on-error method consisting in building models applying various numbers of GMM components and 
testing their effectiveness is not practically applicable for two reasons: 

a) repeating model building and accuracy testing procedure for various model complexities with 
large training and testing sets is very time-consuming, 

b) it requires the subdivision of available speech sample sets into tanning and testing subsets; in 
result the training set is smaller and speech recognition with obtained model is less accurate than 
in case when the whole set of speech samples is used for training. 

Another possibility is to apply popular information criteria used to evaluate statistical models that 
are created so as to fit data sets. We tested here two criteria: Bayesian Information Criterion (BIC), [10] 
and Akaike Information Criterion (AIC), [14]. Experiments carried out and described in the later part of 
the article show that the optimal number of GMM components can be predicted with BIC criterion. When 
calculated for the set of acoustic models created with the same set of training utterances, it reaches its 
minimum for such number of GMM components that is slightly lower than the GMM number for which 
ASR accuracy is maximized. Based on this observation we proposed the acoustic model training 
procedure that creates near-optimal model for the most accurate speech recognition. 

The article is organized as follows. The next section briefly presents acoustic modeling for ASR and 
explains the methods used as baselines of concepts presented in the article. Section 3 introduces formulas 
for AIC and BIC criteria and explains how to interpret it in the context of AM evaluation. In the Section 4 
the experiments aimed on testing correlations between investigated information criteria and ASR 
accuracy in application to medical Polish speech recognition are presented. Finally, the acoustic model 
training procedure is formulated based on experimental observations and some conclusions are drawn in 
Section 5. 

2. USED METHODS 

We consider here the typical approach to ASR based on Hidden Markov Models broadly described 
in literature [6,7]. The acoustic signal (spoken utterance being recognized) is transformed into a sequence 
of observation vectors (o1, o2, ..., ot).. Each observation vector consists of 39 elements (MFCC features 
and their first and second derivatives). The speech process is modeled by a Markov stochastic automaton. 
The architecture of the automaton consists of three levels. On the first level, individual phonemes (or 
context-dependent triphones) are modeled by sequences of states. We applied the phoneme model 
consisting of three emitting states. Entering a state is associated with emission of an observation vector oi. 
On the second level, words from the finite dictionary are modeled by concatenation of state sequences 
corresponding to subsequent phonemes in the phonetic translation of the word. Finally, on the third level, 
word models are linked into the complete graph, which is a model of the arbitrary sequence of spoken 
words. The architecture of the complete HMM is presented on Fig. 1. Symbols <s> and </s> denote here 
the quasi-words corresponding to the beginning and the end of the utterance correspondingly. 
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Fig. 1. The architecture of complete HMM for ASR. 

The model is stochastic, i.e. transitions between states have associated probabilities. Probabilities of 
transitions between end states of word models are determined by a language model. Probabilities of 
transitions between subsequent states of phoneme-level model are determined by an acoustic model. The 
acoustic model also determines pdfs of observation emission probabilities fi(o) for states si. In this work 
we used bigram language model which consists of the set of conditional probabilities p(wi|wj). They are 
the probabilities of occurrences of the word wi provided that the directly preceding word is wj. The 
language model is created by analyzing frequencies of word pairs occurrences in the corpus of domain 
specific texts.  

The utterance recognition consists in finding the most probable state sequence 
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where St is the set of state sequences of the length t, such that there is a transition from the state si to si+1 
in AM for all i=1,…t-1. After transforming it to the equivalent form by applying the Bayes formula: 
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the optimization problem can be solved using Viterbi dynamic programming algorithm [6] called also 
Viterbi decoding. Because of the specific structure of HMM model, the found sequence of states which 
starts in the initial state sO and terminates in the terminal state sE consists of segments corresponding to 
traversing through individual word-level HMMs. The found sequence of states therefore unambiguously 
determines the sequence of words which is assumed to be the final result of the utterance recognition. 

 Probability density functions of observation emission in states are assumed to be Gaussian 
mixtures, i.e. the pdfs are defined by the formula: 
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where: 
- j  - state index, 
- O  - observation vector random variable, 
- M  - number of Gaussian components in the mixture, 
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In order to reduce the complexity of the acoustic model, it is assumed that all covariance matrices 
Ujm are diagonal. Typically, all elements of the acoustic model including state transition probabilities and 
parameters (µjm, Ujm) of pdfs for states for fixed M are estimated using Baum-Welch forward-backward 
algorithm. Details of the method can be found in [6] and [9]. 

While the nature of MFCC features in the observation vector o as well as the number of features 
close to 40 are commonly accepted in ASR systems, the number of components of Gaussian mixtures M 
is still an open issue. It determines acoustic model complexity, because the number of parameter to be 
estimated, when training the acoustic model, linearly depends on the number of Gaussian components. 
Common property of majority of pattern recognition systems is that they are not able to recognize 
accurately if the model complexity is too low. When the model complexity is too high it tends to overfit 
data in the training set. In consequence the model lacks the generalization feature. It recognizes objects 
from the training set accurately, but the recognition performance decreases when objects being 
recognized are out of the training set. Our experiments with ASR confirmed that this general property 
also holds in the domain of speech recognition. Therefore the appropriate selection of Gaussian mixture 
components count is crucial for ASR system performance. Hence, our aim is to elaborate the method 
which sets the number of GMM components M, so as to maximize the speech recognition accuracy for 
the given set of traininig utterances.  

3. APPLICATION OF AKAIKE AND BAYES INFORMATION CRITERIA TO ASR 

Unfortunately, due to the complexity of HMM model, the problem stated above cannot be solved 
analytically. One reasonable solution seems to be the subdivision of the available set of speech samples 
(utterances) into training and testing subsets. Then for various values of M, the acoustic model can be 
created with Baum-Welch procedure using the training subset and the model accuracy can be verified 
using the testing subset. This approach is however impractical because verification, especially as far as 
cross-validation approach is used, strongly slows down the process of AM creation. Moreover, the 
necessity to separate the testing set from available spoken utterances deteriorates the precision of the 
model and, in consequence, reduces the reliability of the obtained result. 

We investigated another approach to fast evaluation of stochastic models based on information 
criteria. Two most popular criteria have been tested: Akaike information criterion (AIC), [10] and Bayes 
information criterion (BIC), [14]. Precise formal derivation of the criteria and the rationale behind its 
interpretation as stochastic models evaluators can be found in the referenced articles. 

AIC measures how good a statistical model fits the training data. Number of parameters which were 
estimated during model training, and likelihood of the model are necessary for AIC calculation. AIC 
cannot be used to identify given model as "good" or "bad". It can only compare a set of given models. It 
is a tool for model selection, not hypothesis verification. The best model, according to this criterion, is the 
model with lowest AIC rank. According to [14], AIC is defined as follows: 

 ),ln(22 maxLkAIC −=  (4) 

where k is the number of parameters estimated in the model and Lmax is the maximum likelihood value for the 
ranked model. 

Bayesian information criterion (also known as Schwarz criterion - SBIC or SBC) is another model 
evaluation formula. It is very similar to AIC criterion, although it uses stronger penalty for redundant 
parameters. The original BIC definition from [14] is: 

 )ln(5.0)ln( max nkLBICorg −= , (5) 

where k is the number of parameters estimated in the model, n is the size of training sample and Lmax is 
the maximum likelihood obtained for the data sample in the trained model. Since BIC is only a relative 
rank, it could differ by a constant factor. By multiplying (5) by the constant factor -2 the BIC formula 
more consistent with (4) can be obtained. For this reason, following the reasoning presented in [15], for 
the sake of this work BIC criterion is defined as: 
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 )ln(2)ln( maxLnkBIC −= ,  (6) 

The best model, according to BIC criterion, is the model where the rank defined in equation (6) is 
smallest. AIC and BIC criteria were successfully used in the evaluation of stochastic models in various 
science domains [11-13] but to our best knowledge there were no such documented attempts to acoustic 
models evaluation, in particular in applications to Polish speech recognition. 

In the application to HMM model evaluation for speech recognition, we evaluate the phoneme state 
models defined according to (3). For Polish speech we used models corresponding to 40 phonemes in the 
case of context independent phonemes, what gives 120 emitting states, for which models are created. In 
the case of context-dependent phonemes (triphones), due to state tying procedure [4], the actual count of 
states varies depending on the amount of training data. BIC and AIC criteria can be easily computed 
using formulas (4) and (6) individually for each state of the HMM model. In order to evaluate the 
complete model, assessments computed for individual states are summed. The number of parameters k in 
each state is in our approach uniform. The parameters being estimated for each state j and each GMM 
component m are mean values µjm and elements of the diagonal of the covariance matrix Ujm. Provided 
that the observation vector consists of 39 features, the number of parameters being estimated for each 
individual state is:  

 MMk *39*2)( = .  (7) 

The Baum-Welch estimation procedure actually estimates also the near-diagonal elements of state 
transition matrix for each phoneme or triphone (6 parameters for each phoneme/triphone are used in the 
assumed architecture of the model) as well as weight factors cjm of GMM components, but they were not 
taken into account. This is because we focus here rather on state pdfs modeling, which is not directly 
related to transitions between adjacent states. The number of samples nj for each state j can be obtained 
by applying Viterbi alignment to all training utterances and by counting observation vectors assigned to 
the state. Viterbi alignment consists here in creation of the specific compound HMM for each training 
utterance so as that only this utterance can be recognized. The utterance-specific HMM is just the 
concatenation of word models for subsequent words constituting the utterance. The utterance is then 
recognized with this specific model according to typical recognition rules determined by (1) and (2) with 
Viterbi decoding. The side-effect of Viterbi decoding algorithm is the segmentation of the recognized 
observation sequence into the subsequences corresponding to individual states. In this way each 
observation is assigned to a state and in consequence, for each state j the number of observations nj 
assigned to it can be found. Finally, the likelihood Lmax for the state j can be calculated as:   

 ∏∑
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where θj is the set of observations assigned to the state j by Viterbi alignment and cjm, µjm and cjm are 
parameters determined by the Baum-Welch procedure. 

Let J denotes the actual number or distinguishable states in the whole acoustic model Γ. The 
assessment of the complete acoustic model Γ(M) based on M Gaussian components can be obtained by 
summing assessments related to individual states: 
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Having defined AIC and BIC criteria applied specifically to acoustic models created with the same 
training set differing in the number of Gaussian mixture component counts, the best model can be 
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selected by finding such one which minimizes the criterion value. It must be however experimentally 
verified: 

a) whether the model that minimizes the criterion value actually maximizes the ASR accuracy, 
b) which of considered criteria (AIC, BIC) correlates better with ASR accuracy. 

4. EXPERIMENTS 

In order to test the dependence between the accuracy of ASR and the value of AIC and BIC criteria 
the experiment has been carried out. In the experiment, series of HMM models were created for various 
numbers of Gaussian mixtures M. For each obtained model, the ASR accuracy was tested using the 
testing set of utterances and information criteria were calculated. The aim is to verify if the maximum of 
ASR accuracy correlates with the minimum of information criteria, both treated as a function of M. HTK 
package [9] was used in the experiment for model creation and ASR accuracy evaluation. As a speech 
recognizer we used the Julius decoder [8]. 

The series of models for increasing M were created in an iterative procedure consisting in repeating 
of the single iteration of Baum-Welch procedure. By the single iteration we mean here the update of 
model parameters, which is a result of applying Baum-Welch forward-backward procedure for the whole 
available training utterances set. Baum-Welch procedure just updates the HMM model, so the output of 
the previous iteration is the input to the next iteration. Initial HMM model used as the input to the first 
iteration was obtained by estimation the mean vector and diagonal variance matrix with all observations 
in the training set and by setting these uniform values in all phoneme models. First 9 iterations of Baum-
Welch training are executed for Gaussian model with single mixture (M=1). Then the number of Gaussian 
mixtures M is increased by 2 and three consecutive iterations of Baum-Welch procedure are executed. 
This cycle (increase of GMM count by 2 and three iterations of training) is repeated. At the end of each 
cycle information criteria are calculated and ASR accuracy is tested using a set of verification utterances 
for the resultant HMM acoustic model. 

We performed experiments for 15 speaker-dependent utterances sets being collections of training 
utterances of the duration ranging from 33 minutes to 4 hours and 59 minutes. Language models were 
domain-oriented models related to MR and CT diagnostic imaging reports. On the figures below plots of 
BIC, AIC criteria values and ASR accuracy for selected tests are presented. For remaining test cases the 
overall relation between ASR accuracy and information criteria values was similar to plots shown in 
figures 2, 3, 4 and 5.  

 

 
Fig. 2. ASR accuracy vs. AIC and BIC values; 1h 34min of training utterances duration; triphone model. 
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Fig. 3. ASR accuracy vs. AIC and BIC values; 33min of training utterances duration; triphone model. 

 

 
Fig. 4. ASR accuracy vs. AIC and BIC values; 4h 59min  of training utterances duration; uniphone model. 

 

Fig. 5. ASR accuracy vs. AIC and BIC values; 4h 59min of training utterances duration; triphone model. 

It can be observed that the minimum of BIC criterion appears in all cases for the model obtained 
about 6 iterations (2 cycles) before the maximum ASR accuracy is reached. It corresponds to the count of 
GMM components M lower by 4 in relation to M value corresponding to the maximal ASR accuracy. 
This observation makes it possible to formulate practical rule for selection of the near-optimal complexity 
of the acoustic model: Continue cyclic increase of GMM counts and re-training while BIC value 
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decreases. Then execute two more cycles resulting in further increase of GMM number by 4 and assume 
the resultant model to be near-optimal. 

AIC(M) value considered as a function of M does not exhibit properties that make it a predictor of 
near-optimal complexity of HMM acoustic model. In all cases it constantly decreases with increasing 
value of M. This criterion therefore does not seem to be useful in the problem being considered here.  

5. CONCLUSIONS 

The aim of works described in this article was to elaborate the method that makes it possible to 
select near-optimal complexity of acoustic models for ASR. The complexity of the model is determined 
by the number of parameters being tuned in the process of model creation (training). HMM models used 
for ASR most commonly define pdfs of observation emision in states as Gaussian mixture models, where 
the number of components in the mixture can be tuned, so as to maximize ASR accuracy. The method of 
HMM acoustic model training presented here makes it possible to set near-optimal number of GMM 
components based on easily-calculable Bayes information criterion. The selection can be achieved 
without additional computational cost which would be otherwise necessary to carry out the verification 
procedure based on cross-validation paradigm. The reduction of the training set size, due to the necessity 
to subdivide the available data into training and testing sets, is not necessary. 

Experiments conducted with medical texts corpora proved that Bayes information criterion can be 
used as relatively accurate predictor of near-optimal model complexity. Although experiments described 
here were aimed on Polish medical speech recognition applied to diagnostic image reporting, the results 
probably hold also for other domain-specific language models and for other languages. 
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