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In the paper, the method of acoustic model complebavel selection for automatic speech recognitisn
proposed. Selection of the appropriate model coxitpl@ffects significantly the accuracy of speeeleagnition. For
this reason the selection of the appropriate coxtyldevel is crucial for practical speech recognit applications,
where end user effort related to the implementatibspeech recognition system is important. We stigated the
correlation between speech recognition accuracy taval popular information criteria used in statiationodel
evaluation: Bayesian Information Criterion and Adainformation Criterion computed for applied adausnodels.
Experiments carried out for language models reltdegeneral medicine texts and radiology diagnagforting in CT
and MR showed strong correlation of speech recmgnidccuracy and BIC criterion. Using this deperxye the
procedure of Gaussian mixture count selection éouatic model was proposed. Application of thisgedure makes it
possible to create the acoustic model maximiziregg dheech recognition accuracy without additionahatational
costs related to alternative cross-validation agpincand without reduction of training set size,ckhis unavoidable in
the case of cross-validation approach.

1. INTRODUCTION

Automatic speech recognition (ASR) in the recentade became an important tool in medical
information systems, both as a method of enteertstinto databases and as the utility to contedical
devices and software with voice commands. Sigmficaduction of medical documentation preparation
costs as a result of ASR implementation was redoie?]. Another advantage of ASR, particularly
apparent in diagnostic imaging, is shortening efriport turnaround time, i.e. the time elapsethftbe
diagnostic examination to signing of the correspogdeport by a doctor [3]. On the other hand
however, the additional effort form medical stagicessary to begin efficient usage of ASR seemg @ b
prohibitive factor that restricts the popularityA$R application in medicine [4].

One of laborious steps that each ASR user is eggetd carry out is recording of training
utterances that will be used either as a basisrEation of individual speaker acoustic model othas
data for generic acoustic model (AM) adaptation.r @uperiences show that in order to create a
personalized speaker dependent model, it is negessaollect at least a few hours of voice recogdi
[5]. In order to adapt the generic acoustic moda§ sufficient to gather just a few minutes okager
voice samples. In both cases the speech samplé$ars&M creation should be used most effectivsly,
as to maximize the ultimate ASR accuracy. In thesymthe end user effort necessary to start using AS
technology will be minimized, while still presergmelatively high recognition accuracy.

Majority of approaches to ASR utilize Hidden MarkModel (HMM), [6-9] as a data structure
used by the speech recognizer. Acoustic modeligncese defines the probability density functiqudf<)
of observation vector emission in HMM states. Thedel complexity is determined by the number of
distinguishable states and by the number of paemnaised in the definition of pdfs. AM training
consists in finding such parameter values in theusiic model, which maximize the likelihood of
observation vector sequences observed in recordiihnyg utterances. Typical training method is Baum
Welch procedure [6,7], which approximates maximadlihood parameter estimation.

The common property of modeling for the sake ofgratrecognition is that the model complexity
affects the effectiveness of training and in resthe final accuracy of the speech recognizer. Whe
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model complexity is too low it is not possible tib the model to actual (unknown) distribution of
observations (features). On the other hand, aggicaf the model with high level of complexity wly
leads to overfitting to training data. The recognizecognizes perfectly items from the training Isett
lacks generalization, i.e. items out of the tragniget are recognized poorly. In general, the model
complexity is defined by the number of parametelnsctv values are adjusted in the training process. |
case of HMM applied to ASR, the parameters adjusteithe process of training are mean values and
variances of multivariate Gaussian pdfs used toeholdservation vector distributions in states. ldeo

to model the observation distributions more prdgjsBaussian mixture models (GMMs) are applied in
many software packages supporting ASR [8,9]. Oneafs to control the acoustic model complexity is
to set the number of components in GMMs.

In the works presented in this paper we investigabev the number of Gaussian mixture
components in acoustic models for ASR influencesatcuracy of the speech recognition. The aim is to
elaborate the method of determination of GMM congmas count which maximizes the accuracy. The
trial-on-error method consisting in building mode|splying various numbers of GMM components and
testing their effectiveness is not practically apgdble for two reasons:

a) repeating model building and accuracy testing pioce for various model complexities with
large training and testing sets is very time-consgm

b) it requires the subdivision of available speech @ansets into tanning and testing subsets; in
result the training set is smaller and speech m&tiog with obtained model is less accurate than
in case when the whole set of speech samples dsfasgaining.

Another possibility is to apply popular informatienteria used to evaluate statistical models that
are created so as to fit data sets. We testedtWwereriteria: Bayesian Information Criterion (BIG)0]
and Akaike Information Criterion (AIC), [14]. Experents carried out and described in the later pfart
the article show that the optimal number of GMM @aments can be predicted with BIC criterion. When
calculated for the set of acoustic models creatdld the same set of training utterances, it readtses
minimum for such number of GMM components thatlighsly lower than the GMM number for which
ASR accuracy is maximized. Based on this obsemati®@ proposed the acoustic model training
procedure that creates near-optimal model for thstraccurate speech recognition.

The article is organized as follows. The next sechriefly presents acoustic modeling for ASR and
explains the methods used as baselines of conpegasnted in the article. Section 3 introduces bas
for AIC and BIC criteria and explains how to integpit in the context of AM evaluation. In the Seat4
the experiments aimed on testing correlations batwemvestigated information criteria and ASR
accuracy in application to medical Polish speedogaition are presented. Finally, the acoustic rhode
training procedure is formulated based on experiati@bservations and some conclusions are drawn in
Section 5.

2. USED METHODS

We consider here the typical approach to ASR basedidden Markov Models broadly described
in literature [6,7]. The acoustic signal (spoketergnce being recognized) is transformed into aescp
of observation vectorf{, o, ..., Q).. Each observation vector consists of 39 elem@vitsSCC features
and their first and second derivatives). The spgeohess is modeled by a Markov stochastic autamato
The architecture of the automaton consists of thegels. On the first level, individual phonemes (o0
context-dependent triphones) are modeled by seqaent states. We applied the phoneme model
consisting of three emitting states. Entering gestaassociated with emission of an observati@iove;.
On the second level, words from the finite dictignare modeled by concatenation of state sequences
corresponding to subsequent phonemes in the pledratisiation of the word. Finally, on the thirdéé
word models are linked into the complete graph,clwhs a model of the arbitrary sequence of spoken
words. The architecture of the complete HMM is preésd on Fig. 1. Symbotss> and</s> denote here
the quasi-words corresponding to the beginningthaend of the utterance correspondingly.
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Fig. 1. The architecture of complete HMM for ASR.
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The model is stochastic, i.e. transitions betweates have associated probabilities. Probabildfes
transitions between end states of word models atermiined by danguage modelProbabilities of
transitions between subsequent states of phonermakr®del are determined by anoustic modelThe
acoustic model also determines pdfs of observamission probabilitie§(o) for statess. In this work
we used bigram language model which consists osétef conditional probabilitigg(wi|w;). They are
the probabilities of occurrences of the wawd provided that the directly preceding wordwis The
language model is created by analyzing frequermii@gord pairs occurrences in the corpus of domain
specific texts.

The utterance recognition consists in finding theosin probable state sequence

S =(%.5,8,:---S,,S) in the compound HMM conditioned on the sequencebservation vectorsy,

0, ..., Q) extracted from the acoustic signal of the utteean
S = argmax P( $%S,5S10,0;,,-.:,0,), (1)
$,5, 508"

whereS is the set of state sequences of the lehgthch that there is a transition from the s$ate .1
in AM for all i=1,...t-1. After transforming it to the equivalent form bypdying the Bayes formula:

S = argmax P(s§s,SS:)0(0,0,,..,0,)) » (2)

$,S, 508"

the optimization problem can be solved using Vitelynamic programming algorithm [6] called also
Viterbi decoding. Because of the specific structofredMM model, the found sequence of states which
starts in the initial state sO and terminates etdrminal state SE consists of segments corresugphaol
traversing through individual word-level HMMs. Thaund sequence of states therefore unambiguously
determines the sequence of words which is assuoneel the final result of the utterance recognition.

Probability density functions of observation enuasin states are assumed to be Gaussian
mixtures, i.e. the pdfs are defined by the formula:

M
bj (O):Zijg(o;/jijUjm)’ (3)
m=1
where:
-] - state index,
-0 - observation vector random variable,
-M - number of Gaussian components in the mixture,
M
- Gm - normalization coefficientz C,, =1 for each statg),
m=1

- 9(Ou,V) - Gaussian pdf with the mean vectaand the covariance matrix
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In order to reduce the complexity of the acoustadei, it is assumed that all covariance matrices
Uim are diagonal. Typically, all elements of the at¢ousiodel including state transition probabilitiasd
parameters/m, Uim) of pdfs for states for fixet are estimated using Baum-Welch forward-backward
algorithm. Details of the method can be found ingid [9].

While the nature of MFCC features in the observatiectoro as well as the number of features
close to 40 are commonly accepted in ASR systemesntimber of components of Gaussian mixtiles
is still an open issue. It determines acoustic rhodmplexity, because the number of parameter to be
estimated, when training the acoustic model, liiyedepends on the number of Gaussian components.
Common property of majority of pattern recognitisystems is that they are not able to recognize
accurately if the model complexity is too low. Whitie model complexity is too high it tends to oiterf
data in the training set. In consequence the miad&k the generalization feature. It recognizesdbj
from the training set accurately, but the recognitiperformance decreases when objects being
recognized are out of the training set. Our expenits with ASR confirmed that this general property
also holds in the domain of speech recognition.réfoee the appropriate selection of Gaussian maxtur
components count is crucial for ASR system perforcea Hence, our aim is to elaborate the method
which sets the number of GMM componeMs so as to maximize the speech recognition accui@cy
the given set of traininig utterances.

3. APPLICATION OF AKAIKE AND BAYES INFORMATION CRITERA TO ASR

Unfortunately, due to the complexity of HMM mod#ie problem stated above cannot be solved
analytically. One reasonable solution seems tdhbesubdivision of the available set of speech sasnpl
(utterances) into training and testing subsetsnTioe various values o, the acoustic model can be
created with Baum-Welch procedure using the trgirsnbset and the model accuracy can be verified
using the testing subset. This approach is howenpractical because verification, especially asaar
cross-validation approach is used, strongly slows/idthe process of AM creation. Moreover, the
necessity to separate the testing set from availapbken utterances deteriorates the precisioheof t
model and, in consequence, reduces the reliabilitire obtained result.

We investigated another approach to fast evaluatfostochastic models based on information
criteria. Two most popular criteria have been esékaike information criterior{AIC), [10] andBayes
information criterion(BIC), [14]. Precise formal derivation of the crite and the rationale behind its
interpretation as stochastic models evaluatordediound in the referenced articles.

AIC measures how good a statistical model fitsttaming data. Number of parameters which were
estimated during model training, and likelihoodtbé model are necessary for AIC calculation. AIC
cannot be used to identify given model as "good™bad". It can only compare a set of given modkls.
is a tool for model selection, not hypothesis veaifion. The best model, according to this criteyie the
model with lowest AIC rank. According to [14], A€ defined as follows:

AIC = 2k - 2In(L,.,), 4)

wherek is the number of parameters estimated in the madeél ., is the maximum likelihood value for the
ranked model.

Bayesian information criterion (also known as Sataaiterion - SBIC or SBCis another model
evaluation formula. It is very similar to AIC cniten, although it uses stronger penalty for redumda
parameters. The original BIC definition from [14] i

BIC,, =In(L) — 05kIn(n), (5)

wherek is the number of parameters estimated in the modslthe size of training sample abgaxis
the maximum likelihood obtained for the data sampléhe trained model. Since BIC is only a relative
rank, it could differ by a constant factor. By nipllging (5) by the constant facteR the BIC formula
more consistent with (4) can be obtained. For tb@&son, following the reasoning presented in [fidy],
the sake of this work BIC criterion is defined as:
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BIC =kIn(n) - 2In(L,..), (6)

The best model, according to BIC criterion, is thedel where the rank defined in equation (6) is
smallest. AIC and BIC criteria were successfulledisn the evaluation of stochastic models in vaiou
science domains [11-13] but to our best knowledigeet were no such documented attempts to acoustic
models evaluation, in particular in applications’wish speech recognition.

In the application to HMM model evaluation for sple@ecognition, we evaluate the phoneme state
models defined according to (3). For Polish speeelused models corresponding to 40 phonemes in the
case of context independent phonemes, what givesditting states, for which models are created. In
the case of context-dependent phonemes (triphodes)to state tying procedure [4], the actual caidint
states varies depending on the amount of trainatg.BIC and AIC criteria can be easily computed
using formulas (4) and (6) individually for eaclatst of the HMM model. In order to evaluate the
complete model, assessments computed for indivetaggs are summed. The number of paramkters
each state is in our approach uniform. The paraséteing estimated for each statand each GMM
componenim are mean valuegm and elements of the diagonal of the covarianceixgk,. Provided
that the observation vector consists of 39 feajutes number of parameters being estimated for eacl
individual state is:

k(M) =2*39* M . @)

The Baum-Welch estimation procedure actually esgsalso the near-diagonal elements of state
transition matrix for each phoneme or triphone éameters for each phoneme/triphone are used in the
assumed architecture of the model) as well as wéaghorsc, of GMM components, but they were not
taken into account. This is because we focus hadtesr on state pdfs modeling, which is not directly
related to transitions between adjacent states.nlingoer of samples; for each statg¢ can be obtained
by applying Viterbi alignment to all training utterces and by counting observation vectors assigned
the state. Viterbi alignment consists here in eogabf the specific compound HMM for each training
utterance so as that only this utterance can begrézed. The utterance-specific HMM is just the
concatenation of word models for subsequent wodisstituting the utterance. The utterance is then
recognized with this specific model according tpit¢gl recognition rules determined by (1) and (Zhw
Viterbi decoding. The side-effect of Viterbi decogialgorithm is the segmentation of the recognized
observation sequence into the subsequences comdiegoto individual states. In this way each
observation is assigned to a state and in consequéor each statg the number of observations
assigned to it can be found. Finally, the likelildg .« for the stat¢ can be calculated as:

) =OE| > €90 Uy U i) (8)

m=1

whered, is the set of observations assigned to the gthieViterbi alignment anajm, yjm andc, are
parameters determined by the Baum-Welch procedure.

Let J denotes the actual number or distinguishable statethe whole acoustic modél The
assessment of the complete acoustic méd) based orM Gaussian components can be obtained by
summing assessments related to individual states:

BIC(I'(M)) = Z(k(l\/l)ln(nj)—2|n(|-max(i)),

; ©)
AIC(T (M) = 2Jk(M) = 2> In(L ., ().

=1

Having defined AIC and BIC criteria applied spexddily to acoustic models created with the same
training set differing in the number of Gaussianxtonie component counts, the best model can be
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selected by finding such one which minimizes thigegon value. It must be however experimentally
verified:

a) whether the model that minimizes the criterion eahgtually maximizes the ASR accuracy,

b) which of considered criteria (AIC, BIC) correlatastter with ASR accuracy.

4. EXPERIMENTS

In order to test the dependence between the agcafa&SR and the value of AIC and BIC criteria
the experiment has been carried out. In the exatinseries of HMM models were created for various
numbers of Gaussian mixturdés. For each obtained model, the ASR accuracy waedassing the
testing set of utterances and information critereae calculated. The aim is to verify if the maximof
ASR accuracy correlates with the minimum of infotimia criteria, both treated as a functionMf HTK
package [9] was used in the experiment for modehtasn and ASR accuracy evaluation. As a speech
recognizer we used the Julius decoder [8].

The series of models for increasikigwere created in an iterative procedure consistimgpeating
of the single iteration of Baum-Welch procedure. tBg single iteration we mean here the update of
model parameters, which is a result of applyingrBatlfelch forward-backward procedure for the whole
available training utterances set. Baum-Welch mtoce just updates the HMM model, so the output of
the previous iteration is the input to the nextat®n. Initial HMM model used as the input to thrst
iteration was obtained by estimation the mean vemtal diagonal variance matrix with all observagion
in the training set and by setting these unifordues in all phoneme models. First 9 iterations atiB-
Welch training are executed for Gaussian model siitlgle mixture M=1). Then the number of Gaussian
mixturesM is increased by 2 and three consecutive iteratirBaum-Welch procedure are executed.
This cycle (increase of GMM count by 2 and threeations of training) is repeated. At the end afhea
cycle information criteria are calculated and ASiRuaacy is tested using a set of verification atees
for the resultant HMM acoustic model.

We performed experiments for 15 speaker-dependségriances sets being collections of training
utterances of the duration ranging from 33 mindtedg hours and 59 minutes. Language models were
domain-oriented models related to MR and CT diatin@siaging reports. On the figures below plots of
BIC, AIC criteria values and ASR accuracy for stddctests are presented. For remaining test chees t
overall relation between ASR accuracy and inforomattriteria values was similar to plots shown in
figures 2, 3, 4 and 5.
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Fig. 2. ASR accuracy vs. AIC and BIC values; 1h 34nfitmaning utterances duration; triphone model.
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Fig. 3. ASR accuracy vs. AIC and BIC values; 33mirraihing utterances duration; triphone model.
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Fig. 4. ASR accuracy vs. AIC and BIC values; 4h 59mifriraining utterances duration; uniphone model.
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Fig. 5. ASR accuracy vs. AIC and BIC values; 4h 59nfitmaining utterances duration; triphone model.

It can be observed that the minimum of BIC criterepppears in all cases for the model obtained
about 6 iterations (2 cycles) before the maximunRABcuracy is reached. It corresponds to the oount
GMM componentdM lower by 4 in relation taV value corresponding to the maximal ASR accuracy.
This observation makes it possible to formulatestical rule for selection of the near-optimal coexyty
of the acoustic modelContinue cyclic increase of GMM counts and re-tiagn while BIC value
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decreases. Then execute two more cycles resuitihgther increase of GMM number by 4 and assume
the resultant model to be near-optimal.

AIC(M) value considered as a functionMfdoes not exhibit properties that make it a prediof
near-optimal complexity of HMM acoustic model. It @ases it constantly decreases with increasing
value ofM. This criterion therefore does not seem to beulsethe problem being considered here.

5. CONCLUSIONS

The aim of works described in this article was l@berate the method that makes it possible to
select near-optimal complexity of acoustic modelsASR. The complexity of the model is determined
by the number of parameters being tuned in thegzof model creation (training). HMM models used
for ASR most commonly define pdfs of observationstom in states as Gaussian mixture models, where
the number of components in the mixture can beduse as to maximize ASR accuracy. The method of
HMM acoustic model training presented here makgsogsible to set near-optimal number of GMM
components based on easily-calculable Bayes infimacriterion. The selection can be achieved
without additional computational cost which would btherwise necessary to carry out the verification
procedure based on cross-validation paradigm. &dection of the training set size, due to the retes
to subdivide the available data into training aestihg sets, is not necessary.

Experiments conducted with medical texts corpoved that Bayes information criterion can be
used as relatively accurate predictor of near-agitimodel complexity. Although experiments described
here were aimed on Polish medical speech recogregoplied to diagnostic image reporting, the rasult
probably hold also for other domain-specific langgianodels and for other languages.

BIBLIOGRAPHY

[1] HAO Y., Speech-Recognition Technology in Healthe&Cand Special-Needs Assistance, |IEEE Signal Priocess
Magazine, Vol. 87, 2009.

[2] KOIVIKKO M.P., KAUPINNEN T, AHOVUO J., Improvementf report workflow and productivity using speech
recognition - a follow-up study, Journal of Digitataging, Vol. 21, No 4, 2008, pp. 378-382.

[3] LANGER S.G., Impact of Speech Recognition on Rajit Productivity, Journal of Digital Imaging, Vd5,
No 4, 2002, pp. 203-209.

[4] PEZZULLO J.A.,, TUNG G.A., ROGG J.M., DAVIS L.M., BBDY J.M., MAYO_SMITH W.W., Voice
recognition dictation: radiologist as transcriptginJournal of Digital Imaging, Vol. 21, No 4, 22 (Qp. 384-389.

[5] HNATKOWSKA B., SAS J., Application of Automatic Speh Recognition to Medical Reports Spoken in Pplish
Journal of Medical Informatics & Technologies, \idl, 2008, pp. 223-230.

[6] JELINEK F., Statistical Methods for Speech RecdgnitMIT Press, Cambridge, Massachusetts, 1997.

[7]1 JURAFSKY D., MARTIN J., Speech and Language Pradogs#n Introduction to Natural Language Processing
Computational Linguistics and Speech Recognitioanfce Hall, New Jersey, 2000.

[8] LEE A., KAWAHARA T., SHIKANO K., Julius - an Opendirce Real-Time Large Vocabulary Recognition
Engine, Proc. of European Conference on Speech @mmation and Technology (EUROSPEECH), 2001, pp.
1691-1694.

[9] YOUNG S., EVERMAN G., The HTK Book (for HTK Versio3.4), Cambridge University Engineering
Department, 2009.

[10] SCHWARZ G., Estimating the Dimension of a ModelgTAnnals of Statistics, Vol. 6., No. 2, 1978, pp1464.

[11] LIDDLE A.R., Information Criteria for AstrophysicaModel Selection, Monthly Notices of the Royal
Astronomical Society: Letters, Vol. 377, No 1, 20pp. 74-78.

[12] EVANS J., SULLIVAN J., Approximating Model Probaibiés in Bayesian Information Criterion and Decisio
Theoretic Approaches to Model Selection in Phylagies, Mol. Biol. Evol. Vol. 28, No 1, 2011, pp.34349.

[13] ACQUAH H., Comparison of Akaike information criteri (AIC) and Bayesian information criterion (BIG) i
selection of an asymmetric price relationship, dauof Development and Agricultural Economics Va(1),
2010, pp. 001-006.

[14] AKAIKE H., A new look at the statistical model id#fication, IEEE Trans. on Automatic Control, , V&9, No 6,
1974, pp. 716-723.

[15] BURNHAM K. P., ANDERSON D. R., Multimodel inferenc&nderstanding AIC and BIC in model selection,
Sociological Methods and Research, Vol 33, No D42@p. 261-304.

122



