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DISCRIMINATION OF BIOMEDICAL TEXTURES BASED ON LOGICAL 
SIMILARITY MEASURE 

The paper presents an approach to discrimination of textures in  radiological images based on multi-aspect 
similarity measures composed of logical tests. There are formulated basis assumptions for similarity measures which 
can be composed by products of partial (single-aspect) similarity measures. On the basis of  similarity measures  
ε-similarity classes are defined. Next, two types: strong and weak similarity measures are defined. It is shown that they 
make possible to define similarity measures based on quality objects properties as well as on their numerical 
parameters. As an example of application of the general concept discrimination of normal and ill (lesions affected) 
tissues is considered. It is illustrated by analysis of USG images of liver tissues for which morphological spectra and 
their  statistical parameters have been calculated. It is shown that the differences between values of some pairs of 
corresponding parameters can be used to a construction of an effective algorithm of textures discrimination. This 
algorithm takes into consideration both, numerical features of the texture samples and some qualitative data concerning 
the patients. Conclusions are formulated at the end of the paper. 

1. INTRODUCTION 

Discrimination of biomedical textures in radiological or microscopic images is a basis and a 
preliminary step to detection, localization and recognition of lesions in examined organs. We call  
biomedical textures  collections of features and their characteristic parameters which observed and 
extracted from biomedical images make possible recognition of biologically different tissues, their 
localization and segmentation by contouring. For this purpose various features can be taken into 
consideration. The brightness level and color-based texture discrimination methods belong to the 
relatively simple ones. More sophisticated problems arise in monochromatic (USG, X-ray, MR, SPECT, 
PET, etc.) images analysis where characteristic textures’ features in their micro-morphological structure 
are hidden. This is caused by the fact that biomedical tissues are not exactly regular and their textures 
rather as instances of random  structures then as deterministic ones should be considered. In the literature 
concerning biomedical texture analysis probabilistic or statistical models play thus a dominant role 
[3,4,5,7]. Close  to them are combined harmonic-statistical models [1,12,16], the models based on 
wavelets [2,17,21] and on fractal dimensions [9]. A large group of papers concerning  texture analysis 
based on learning methods consists of those exploiting the artificial neural networks [10,14,15] and 
evolutionary algorithms [6,8,20]. In textures discrimination methods evaluation two basic criteria are 
used: discrimination sensitivity and discrimination specificity.  Roughly speaking, the first  one  denotes  
ability of a method   to detect difference between two samples of textures if in a certain, preliminarily 
defined sense they are dissimilar, while the second one means ability to recognize similarity of samples 
belonging to the same class and neglecting any existing between them non-substantial differences. In 
certain situations  invariance of textures discrimination methods to image scaling and/or rotations is also 
required.  

 Discrimination of textures is a basic step to image segmentation, i.e. selection by contouring of 
image regions covered by textures  corresponding to tissues being of interest  (usually – to lesions) in  
a given examination problem.  Segmentation is reached by integration of adjacent sub-areas  in which the 
texture of interest by the discrimination  procedure have been emphasized. However, despite a large class 
of  texture discrimination methods and of their universality, in many cases no “pure” discrimination 
method as the most effective one for image segmentation can be recommended. Higher effectiveness can 
be expected due to using an alternative approach based on combinations of spectral, statistical, 
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morphological, etc.  methods.  A drawback of such approach consists in arising a problem of 
harmonization of various discrimination  quality criteria. In  this paper,  a concept  of  overcoming  this 
difficulty by using a multi-aspect similarity measure based on logical tests is proposed. The paper is 
organized as follows: in Sec. 2 basic notions of multi-aspect similarity measure based on logical tests are  
presented. In Sec. 3 the general concepts are applied to construction of a  multi-aspect similarity measure 
of textures based on statistical parameters of their selected morphological spectral components. Some 
experimental results reached due to using the proposed method to analysis of ultrasound liver images are 
presented in Sec. 4. Sec. 5 contains concluding remarks. 

2. MULTI-ASPECT SIMILARITY MEASURE BASED ON LOGICAL TESTS 

2.1. SIMILARITY AND SIMILARITY MEASURES 

It was mentioned above that similarity plays a substantial role in discrimination of textures. In 
general, it is a formal bi-variable reciprocal and symmetrical relation described in a set of objects. It does 
not satisfy a transitivity condition: if an object ω1 is similar to ω2 and ω2 is similar to ω3 then not 
obviously ω1  is similar to ω3; this in particular can be proven if ω1, ω2 and ω3 denote samples of textures. 
On the other hand, image segmentation should lead to image partition into sub-areas covered by textures 
so that any three texture samples taken from them satisfy not only the reciprocity and symmetry but also 
the transitivity of similarity conditions. This apparent contradiction due to a concept of similarity measure 
can be overcome.   

Definition 1: 
Let Ω denote any set consisting of more than 2 elements (objects). We call similarity measure  

a function σ described on a Cartesian product Ω
 2 satisfying the conditions: 

i.  0 ≤ σ(ω’, ω” ) ≤ 1, 
ii.   σ(ω’, ω’ ) = 1, 
iii.   σ(ω’, ω” ) ≡ σ(ω”, ω’ ), 

iv.  σ(ω’, ω” ) ⋅ σ(ω”, ω’’’ ) ≤ σ(ω’, ω’’’ ) 

for any ω’, ω”, ω’’’  ∈  Ω  • 
The condition iv reminds a well-known “triangle inequality” in a definition of distance measure in  

a metric space [18]. Really, if Ω is also a metric space and d(ω’, ω” ) denotes a distance measure between 
any two its elements then their similarity measure can be defined as 

 σ(ω’, ω”) ≡ exp[–α⋅d(ω’, ω”)] (1) 

where α  is a positive scaling coefficient. It can easily be proven that the conditions i-iv of Definition 1 
are then satisfied; in particular, iv  is satisfied due to the inequality: 

 d(ω’, ω”’) ≤ d(ω’, ω”) + d(ω”, ω”’). (2) 

The set Ω  with a defined in it similarity measure σ  will be called a similarity space. On the basis 
of Definition 1 it can be formulated: 

Definition 2: 
Let Ω  be a similarity space. Any non-empty subset Sε ⊆ Ω such that 0 ≤ε ≤1 and any two its 

elements ω’, ω” ∈  Sε satisfy the condition σ(ω’, ω” ) ≥ ε  will be called an ε -similarity class in Ω • 
Evidently, in any  ε -similarity class Sε  the ε-similarity of its elements is transitive by definition. 

The following theorem concerns extension of the  ε -similarity classes: 
Theorem 1: 
Let Sε be an ε -similarity class in Ω  and let ε min  denoting a minimum similarity measure  between 

any two elements of Sε be such that (ε min)
2 ≥ ε.. Then for any element ω*∈Ω  not belonging to Sε   and 
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such that for an element ω ∈ Sε  it is  σ(ω*, ω) = ε*  ≥ ε.min , the set Sε ∪{ ω* }   is also an ε -similarity class 
in Ω.. 

P r o o f.  It follows  from the property  iv of similarity measure that in the given case, for any other 
ω’  ∈ Sε , ω’  ≠ω, it is: 

 σ(ω*, ω’)  ≥ σ(ω*,ω)⋅σ(ω,ω’) ≥ ε* ⋅ε min ≥ (ε min)
2 ≥ ε. (3) 

Therefore, ω* can be included into Sε  • 
It can thus be concluded that there are some limits for extension of ε-similarity classes by joining to 

them new elements; proving their similarity to a selected element of  the class is in general not sufficient 
if the set of the rest of elements is in their similarity not sufficiently compact.  

The following property plays an important role in multi-aspect similarity detection. 
Theorem 2: 
If σ(1) and σ(2) are two similarity measures described on the same set of objects Ω are satisfying the 

conditions of  Definition 1 then  their product σ = σ(1)⋅ σ(2) (calculated for the same pairs of  
corresponding variables) also satisfies the given conditions. 

P r o o f.  It follows directly from the  form of algebraic conditions i-iv • 
The  Theorem 2  can easily be extended on any finite set of similarity measures. Its practical sense 

is that a multi-aspect similarity measure can be composed as a product of  similarity measures defined for 
separately taken single-aspect  similarity measures. The last Theorem concerns compositions of  
ε -similarity classes. 

Theorem 3: 
Let Sε 1, Sε 2,…,Sε k be k different partial similarity classes described in the same set Ω of objects. 

Then their product  

 Sε  = Sε 1 ∩ Sε 2∩…∩Sε k (4) 

is an ε-similarity class with ε  = ε1⋅ε2⋅...⋅εk . 
P r o o f: Any pair of elements belonging to all partial similarity classes is similar by ε1 in the sense 

of σ(1), by ε2 in the sense of σ(2), etc. Therefore, it is similar by ε =ε1⋅ε2⋅...⋅εk in the sense of σ = σ(1)⋅ σ(2)⋅ 
… ⋅ σ(k) • 

2.2. SIMILARITY MEASURES BASED ON LOGICAL TESTS  

There are several ways the Definition 1 satisfying similarity measures can be established; one of 
them is based on logical tests [11]. this also  in the form of a computer program  has been implemented 
[18]. For this purpose: 1st it is necessary to define a set of logical tests  

 Ti: Xi → {0,1} (5) 

where  Xi,  i= 1,2,...,n, denote some sets of parameters,  and 2nd a logical similarity function on the basis 
of logical tests should be established. In [18] two types of logical tests have been  defined: 

� Nominal tests  are defined on finite sets of the form Xi = {ξ1, ξ2,..., ξk }, called quality attributes, 
like: color, staining (of histological preparation), type of image preliminary filtering, etc.; ξ1, 
ξ2,..., ξk  denote values of the attributes. If Ξi ⊂ Xi is a distinguished subset of the attribute Xi 
values then a nominal test takes the form:  

 Ti(ξ) = 1, if the observed value of the attribute ξ ∈ Ξi , 
 Ti(ξ) = 0  otherwise. (6) 

� Interval tests are defined on the sets Xi of the form of linearly ordered axes of natural or real 
numbers denoting the values of numerical parameters. If ξli, ξhi ∈ Xi, are some border (lowest 
and highest) values such that ξli ≤ ξhi then the following interval test can be defined: 
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 T ++(ξ) = 1, if ξli ≤ ξ ≤ ξhi , 
 T ++ (ξ) = 0 otherwise; (7) 

Similarly, left-closed right-open T + –(ξ), left-open right-closed T –+(ξ) and left-open right-open T – –

(ξ) interval tests can be defined. In the above-given formulae the test values  0 and 1 can also be 
interpreted as Boolean, respectively, “false” and “true”. On the basis of a set of logical tests a logical 
similarity measure in several ways can be defined. Two of them are shown below: 

� Strong similarity function is given by the formula: 

 
mn

mn
mnF

+
−=),.(  (8) 

where  n  is  the number of logical tests  T1, T2,..., Tn  used to similarity assessment, while m,  0 ≤ m ≤ n, 
denotes the number of tests whose assessed value is 0 (“false”). F(n, m) for any natural n is  
a monotonically decreasing function of m, with decreasing decrements, taking value 1 for m = 0 and  0 for 
m = n [20]. 

� Weak similarity function is defined as a weighed sum: 

 ∑
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where v = [v1,v2,...,vn] is a vector of non-negative weights whose sum equals 1, assigning relative 
importance levels to the corresponding logical tests’ values t1, t2,..., tn . 

In stating similarity between two textures two situations should be considered. The first one arises 
when the properties of one texture (a reference texture) are a priori given and the similarity to it of the 
other one is to be stated. The second one arises when the properties of both textures are a priori not given 
and the problem consists in stating their similarity or dissimilarity. In medical applications both cases 
may arise; however, in this paper only the first one will be considered. In this case, the subsets Ξi  in 
nominal tests as well as the intervals in interval tests describe the properties of  the reference  texture 
while the variables ξ   denote  the measured  properties or parameters of the  second, analyzed  texture.  In 
the second case  the variables ξ  should denote the pairs of properties or differences of  parameter values 
corresponding to the compared textures. In both cases a result Ti(ξ ) = 1 means that  the given sample ξ  
to the particular,  i-th strong similarity class. The conditions  i-iii of the Definition 1 for the strong F(n,m) 
and weak G(t,νννν) similarity functions can easily be proven. 

The proof  of  the condition  iv  is a little more sophisticated and is not presented in this paper. 
Below, it will be shown how the above-given general principles can be used to construct similarity 
functions for discrimination of textures. 

3. SIMILARITY MEASURES FOR DISCRIMINATION OF TEXTURES  

3.1. MORPHOLOGICAL SPECTRA AS CHARACTERISTICS OF TEXTURES 

General backgrounds of morphological spectra as tools for textures characterization have been 
given in [13], some statistical properties of morphological spectra of biological textures have been 
described in [12]. Morphological spectra are systems of discrete 2D functions, related to Walsh functions, 
presented in the form of a multi-level hierarchical tree. The root of the tree (the k=0 level) corresponds to 
the bit-map of a monochromatic image. Each next k-th level consists of 4k spectral components coded by 
k letters of the alphabet {S, V, H, X }. The symbols denote: S – assessment of mean pixel values,  
V - enhancement of vertical structures, H – enhancement of horizontal structures, X – enhancement of 
granular structures. Any k-th level spectral component is calculated on a square of 2k×2k pixels size. 
Therefore, calculation of an k-th level spectral component for full image needs partition of the images into 
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basic windows - squares of the above-mentioned size and the spectral component is given in the form of  
a matrix whose size corresponds to the basic windows’ arrangement. Textures observed in radiological 
(USG, SPECT, MRI, etc.) images can be considered as instances of random fields rather than as regular, 
deterministic functions. Example of a liver ultrasonogram and of its selected spectral components SS and 
SX, as well as histograms of their spatial distribution values are shown in Fig. 1.  

 

 
Fig. 1. Ultrasonogram of liver tissue and of its morphological spectral components SS and SX. 

Statistical analysis of histograms of liver tissues’ spectral components has shown that even in the 
case when no difference between normal and lesion-affected tissue by a naked eye could be remarked, 
evident differences between their statistical parameters occur. This is illustrated in Table 1 where several 
2-nd level spectral components are analyzed. There were calculated: mean values, standard deviation, 
skewness, kurtosis and entropy of histograms taken over regions consisting of compact sets of 64 basic 
windows of 4×4 pixels size. Then, in order to make the results independent on average image luminance 
level, all parameters have been normalized by dividing by their mean values. The results are grouped in 
pairs: h – for normal (healthy) and i – for ill tissue for better illustration of their differences. It can be 
observed that certain parameters well discriminate normal and ill tissues: standard deviations of SH and 
HH, skewness of HH, HV and HX, kurtosis of SH, HH, HV and HX, entropy of SS, SH and HH. None of 
the mentioned parameters is sufficient to discriminate normal and ill tissues. However, they all can be 
used to construct of logical tests for a multi-aspect logical similarity measure.  

Table 1. Normalized statistical parameters of selected spectral components of a liver ultrasonogram. 

 
 
 
 
 
 
 

3.2. CONSTRUCTION OF A LOGICAL SIMILARITY MEASURE 

As a basis for description of a “normal liver tissue” ω’ for a given class of patients we can take the 
following quality features: 

T1:   sexuality – man, 
T2:   aged – between 40 and 60 years, 
T3:   vaccinated against type A jaundice – yes, 
T4:   SH standard deviation level – 0.760 ± 20%, 
T5:   HH standard deviation level± 20%, 
T6:   HH skewness level – 0.016± 20%, 

 SS SS SH SH HS HS HH HH HV HV HX HX 

 h i h i h i h i h i h i 

stdev 0.314 0.303 0.760 1.810 0.784 0.851 0.765 1.557 0.788 1.199 0.775 0.776 

skew 0.000 0.003 0.024 0.020 0.011 0.023 0.016 0.040 0.060 0.134 0.092 0.017 

kurt 0.000 0.000 0.019 0.152 0,012 0.023 0.014 0.114 0.078 0.167 0.144 0.067 

entr 0.014 0.007 0.158 0.085 0.076 0.064 0.112 0.072 0.285 0.201 0.392 0.391 
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T7:   HV skewness level – 0.060± 20%, 
T8:   HX skewness level – 0.017± 20%, 
T9:   SH kurtosis level – 0.019± 20%, 
T10:  HH kurtosis level – 0.014± 20%, 
T11:  HV kurtosis level – 0.078± 20%, 
T12:  HX kurtosis level – 0.144± 20%, 
T13:  SS entropy level – 0.014± 20%, 
T14:  SH entropy level – 0.158± 20%, 
T15:  HH entropy level – 0.112± 20%. 

For healthy/ill textures discrimination, where ω“ denotes an examined texture,  a composed 
similarity measure will be defined: 

 σ(ω’,ω” ) = σ(1)(ω’,ω” )⋅σ(2)(ω’,ω” ) (10) 

where, according to (9):  

 σ(1)(ω’,ω” ) = 0.2T1 + 0.6T2 + 0.2T3 (11) 

reflects relative values assigned to the partial similarity aspects T1, T2 and T3, while σ(2)(ω’,ω” ) is given 
by the function F(n,m) calculated for the tests T4,…, T15. Finally, a decision assigning an examined 
sample  ω “ of texture to the class  healthy (similar to ω ‘) will take the form:  

 ω“ ∈ healthy if  σ(ω’,ω”) ≥ γ, 
 ω“ ∉ healthy otherwise, (12)  

where 0 < γ ≤ 1 is a fixed threshold level. 

4. CONCLUSIONS 

Multi-aspect similarity measures based on logical tests are a flexible tool for description similarity 
classes of objects by taking into account combinations of their various qualitative features and numerical 
parameters. However, for this purpose some formal conditions by the similarity measure should be 
satisfied. Logical similarity may be combined with many other in pattern recognition used models like: 
spectral analysis (Fourier, wavelets, morphological etc.), geometry, fractals, statistics, color analysis, etc. 
In fact, using multi-aspect similarity measures in computer-aided pattern recognition makes it closer to 
natural visual perception which also is based on large classes of objects’ features and properties. Further 
investigation of this approach seems thus to be desirable. 
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