JOURNAL OF MEDICAL INFORMATICS& TECHNOLOGIESVoal. 17/2011, | SSN 1642-6037

impulsive noise, myriad filter,
meridian filter, fetal heart rate,
FHR baseline

Tomasz PANDER Tomasz PRZYBYLA , Janusz WROBEL,
Janusz JEZEWSK| Dawid ROJ

APPLICATION OF GENERALIZED FILTERSFOR ESTIMATION
OF FETAL HEART RATE BASELINE

This paper addresses the problem of impulsive reziseellation in digital signal area. The myriad anmeridian
filters are the type of robust filters which areweseful in suppressing the impulsive type of aoiBhe cost functions
of theses filters have very similar structure. histpaper the generalized filter basedlgmorm is presented. The
proposed filter operates in a wide range of imwelsnoise due to the proper adjustmentpdh the L, norm. The
presented filter is applied to suppress an impealsivise in fetal heart rate (FHR) signal. Simulatiesults confirm the
validity of the proposed filter.

1. INTRODUCTION

Cardiotocography is a widely used method of fetahitoring, which enables evaluation of a fetal
condition during pregnancy and in labour. It rel@s simultaneous acquisition and analysis of three
signals: fetal heart rate (FHR), maternal uteriaeti@ctions and fetal movement activity. In tramhl
cardiotocography the signals are recorded and psedeby a bedside fetal monitor. The visual evalnat
of printed waveforms is subjective and consideraiidypends on the experience and knowledge of
clinicians. External computer-aided automated aisilgllows for more accurate evaluation of signals,
providing the obstetrician with a quantitative dgstton of traces. It considerably improves the
objectivity and reproducibility of signals interpagon [13,14].

Starting point of all algorithms for automated patts detection is the estimation of so called FHR
baseline which can be obtained as a result of rergawne distortion from FHR signal. It is a common
opinion, that just the algorithm for FHR baselingimation determines the accuracy of quantitative
analysis of the entire signal. The existing methotiEHR baseline estimation are presented in [8-10]
Event small differences from real shape of the Ibasanay significantly distort detection of the key
patterns and thus lead to misdetection of fetdiabs [6].

The paper is organized as follows. Section 2 costalefinition of cost function as well as
definitions of weighted myriad and weighted mendi§ection 3 introduces the generalized cost fancti
The section 4 shows obtained results. Conclusiongptete the paper.

2. FAMILY OF M-ESTIMATOR FILTERS

One of the popular robust method is the methoddasethe maximum likelihood estimators (M-
estimators) [3-5]. The principle of M-estimatorsadae formulated in the following way. Assume that a
set ofN data samples,;, %, ..., X IS given, wheres=/£+v; andl <i <N. The problem is to estimate the
location parametefs under noise componewt This parameter identifies the position of thebadality
density function (pdf) on the real line of data gées. The distribution of; is not assumed to be exactly
known. The only basic assumption is that...,.w obey a symmetric, independent and identical
distribution (symmetric i.i.d).

The generalized form of M-estimator is defined@kivs. If the cost functiop(x, f) is chosen as

p(x B)=-log f(x, B) @)
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then the M-estimate gives the ordinary maximumlilled estimate, wherg is the observed random
variable with thef(x) probability density function, an@ is the parameter to be estimated. In practical
situations, the underlying noigedf is difficult to estimate, angxx, f) is usually chosen as a fixed
function of residuak=x- g, that isp(x, £)=0(X-£).

The M-estimate was originally proposed to improgbustness of statistical estimators subject to
small deviations mentioned above. The M—estimatg.f;’ois defined as the minimum of a global energy
function

~ . N
B =argmin>” p(x - B). 2)
A0
The functiono(°) is called the penalty or the cost function. An Mimator of location is defined as
the parameter that minimizes the expression (2). The behaviothef M-estimator is completely
characterized by the shapea#) function [5].

2.1.WEIGHTED MYRIAD AND MERIDIAN COST FUNCTIONS

For the Cauchy distribution, the location parametealled the sample myriad. For a given setl of
independent and identically distributed sample$ edieying the Cauchy distribution with common scale
parameter, the sample myriad is a value that mzesthe following expression [1,15]

,éK = argrpDiQiZ::IOg[KZ + (xi _,3)2], (3)

where:fis the location parameter, aKds the scale parameter. By assigning non-negateights to the

input samples, the weighted myriad is derived gereralization of the sample myriad. For thei.d.
observations{xi}i'\il and the assigned Weigh{wi}i'“:l, the weighted myriad can be computed from the
following expression

By = argr/r}uﬂiﬂnélog[K2 +w (x, _ﬁ)z], (4)

The value of the weighted myriad depends on thasa#x, the assigned weightg and the scale
parameteK. Two interesting cases may occur. First, wherkihalue tends to infinity, then the value of
weighted myriad converges with the weighted medns Pproperty is called myriad linear property [8].
Second interesting case called modal property,rsaghen the value df parameter tends to zero. In this
case the value of the weighted myriad is alwaysaktpuone of the most frequent values in the datase
[1,4,11].

The random variable formed as the ratio of two patglent zero mean Laplacian distributed
random variables is referred to as the Meridiatriistion. For the given set o i.i.d. samples{xi}i“i1

each obeying the Meridian distribution with the ¢oon scale parametér(called medianity parameter),
the sample meridian is given by [2]

Bs :argrpDiDniZ:1:Iog[5+|xi —ﬁ|] (5)

The sample meridian can be generalized to the wergimeridian by assigning non-negative
weights to the input samples, then the weighteddiaer is given by

By = argrpuig .Z:: Iog[5+ W |x = ,6’|] . (6)
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The behavior of the weighted meridian significandgpends on the value of its medianity
paramete®. Again, two interesting cases may occur. The fiete occurs when the value of medianity
parameter tends to infinity, the weighted meridiarequivalent to weighted median. This property is
called the median property. The second interestege, called the modal property, occurs when the

medianity parameted tends to zero. In this case, the weighted meritﬁ’gn’s equal to one of the most
repeated values in the input dataset [2,16].

3. GENERALIZED COST FUNCTION

Comparing the properties of the M-estimators preskim previous sections, a common features
can be found. One of them is the behavior of thien@sors when the spare parameter (K.@r J) tends
to zero. Then, for the same datagetthe value of the weighted myriad is equal to viadue of the
weighted meridian. Another common feature of thehbbl-estimators is similar form of the cost
functions. The weighted myriad cost function uses b norm while the weighted meridian cost function
uses thd.; norm.

Let theL, norm be defined as follows [12]:

o, =(3ar)" o

where:z is ans-dimensional real valued vector (iZ/.F). Applying theL, norm to the weighted myriad
cost function (4) or weighted meridian cost funet{6), the generalized cost function can be expkss
the following form

P (B)= ilog[f +wlx -4, | ®)

where:||[ﬂ]p is theL, norm to thepth power, and the paramei€corresponds to the medianity paramefer
for p=1, and to the linearity parameti€rfor p=2. It should be mentioned, that fprl the £ parameter is
equal to the medianity paramet@ibut forp=2 the £ parameter is equal to the square root of the fityea
parameteK (i.e. & =K ).

The objective functiono{™(83) for fixed value of¢ and given datasefx }\, the order statistics
of X has the following properties:

. p{P(B) is strictly decreasing fgf < x4, and strictly increasing f > xu,

. all local extrema ofo{”(B) lie in the intervalx, ..., ],

1

2

3. if 0 < p =1, the solution is one of the input samples (sebectype filter),

4. if 1 < p < oo, the objective function has at mopfN-1) local extrema points and therefore a finite
set of local minima.

Figure 1 shows a typical shape of t,b?’) (,8) cost function for different values pfand foré=>5.
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(,3) functions for different values of 0.5, 1, 1.5, 2, 2.5, 3, 3.5; 4} ar&d5.

(p)
Input samples are x={4.9, 0, 6.5, 10, 9.5, 1.7, 1}.
let the 5, be the value minimizing the

Fig. 1. Typical O;
N
i=1°

For the given dataséls(i}i“:1 and the assigned Weigr{lwl}
(9)

generalized cost function (6), i.e.:
~ . N
B = argrymlmnglog[gﬂwl||xi —ﬁ||p].

Equation (9) defines the output of the proposederdized filter. Fop=1 a weighted meridian is a
special case of3;, and forp=2 the weighted myriad is a special caseff Properties of thes, value
are presented in Table 1. It can be noted thaptbper adjustment df for Cauchy-based cost functions

is well known and in the literature exists a fewipes to solve it (for example [4][17]).

The fundamental problem of the weighted robusgrfdtis generally the proper selection of weights
and the window length. The obvious fact is thatcggeoptimization procedures exist and in the adapt
way it is possible to find proper values of weigtgsit such operations are very time consuming aed t

optimization procedure has to be repeated whenptbperties of signal changes. For example, the
description of the adaptive weighted myriad filterdescribed in [11]. In this work for simplicitynd

without a loss of generality that problem, the wesgvi=1/N for i=1,...,N and further analysis of the
weights value are not considered. The method fitmason the output of investigated filter is thred-

point method presented in [1,4].
Table 1. Selected properties of ty% estimator.
& p=1 p=2
&0 Most frequent value in the input dataset
0<&< ,@5 = meridiar(vvi Ox |i“il;£) ,@5 = myriad(vvi [Ox |i“il;\/?)
£-0 B, = mediarw Ox, |%,) B, =mearhw Ox [1,)
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4. SIMULATION RESULTS

In our experiment, fetal heart rate signals weredus\ll these signals were recorded using the
computer aided fetal monitoring system MONAKO [The signals were obtained from fetal monitor
which provided every 250 ms the consecutive digitehsurements of FHR signal. Such samples have
value in the range from 50bpm to 210bpm, but irea#ssignal loss, due to bad measurement condjtions
its value is set to zero. So, all the epochs wétlo zamplitude in the FHR signals can be regarded as
impulsive noise in the signal and undergo filtratprocess.

Figure 2 shows the FHR signal. The left part olifeg presents a good quality FHR i.e. without
signal loss. The right part presents a bad qu&li§R signal with signal loss marked as zero value
samples. Figure 3 shows the obtained output signgd=2.5 and different window lengths, and figure 4
presents the obtained output signalgeB.0. Figure 5 shows the output signal fi3*3.0, when the input
signal contains zero amplitudes.

It can be noticed, that for both cases (good amtchelity FHR signals), the impulsive noise was
suppressed. For the window length greater tNa@1, short loss of signal does not affect the output
signal. In such a case, the signal loss is regaademlitliers and does not affect the filter output.

5. CONCLUSIONS

In a real biomedical signal analysis we deal witho&e. In case of the cardiotocography signal, the
noise amplitude is relatively high. The impulsivaise decreases the signal quality and makes itliff
to analyze the signal without filtering. In thispes, the idea of the generalized filter was presnt
Depending on the filter parameters, the outpuhefgdroposed filter can be: weighted meridian, wieidh
myriad, weighted median or weighted mean. An apfibn of the proposed filter for the estimation of
the fetal heart rate confirms its usefulness in m#lications. The proposed method significantly
increases the accuracy of the FHR baseline estmati these episodes with respect to previously
presented method. The present work solves thegrobf performance and estimation of ghealue.
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Fig. 2. Two examples of fetal heart rate signale Teft fragment presents a good quality FHR i.¢hevit signal loss episodes. The right
one presents a bad quality FHR signal with sigred Episodes marked as the FHR samples with zere.valu
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Fig. 3. Output signal of the proposed filter obealrforp=2.5 and for the good quality FHR signal.
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Fig. 4. Output signal of the proposed filter ob&irforp=3.0 and for the good quality FHR signal.
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Fig. 5. Output signal of proposed filter obtained@g=3 when the input is the bad quality FHR signal cargdizero value FHR samples.
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