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This paper addresses the problem of impulsive noise cancellation in digital signal area. The myriad and meridian 
filters are the type of robust filters which are very useful in suppressing the impulsive type of noise. The cost functions 
of theses filters have very similar structure. In this paper the generalized filter based on Lp norm is presented. The 
proposed filter operates in a wide range of impulsive noise due to the proper adjustment of p in the Lp norm. The 
presented filter is applied to suppress an impulsive noise in fetal heart rate (FHR) signal. Simulation results confirm the 
validity of the proposed filter. 

1. INTRODUCTION 

Cardiotocography is a widely used method of fetal monitoring, which enables evaluation of a fetal 
condition during pregnancy and in labour. It relies on simultaneous acquisition and analysis of three 
signals: fetal heart rate (FHR), maternal uterine contractions and fetal movement activity. In traditional 
cardiotocography the signals are recorded and processed by a bedside fetal monitor. The visual evaluation 
of printed waveforms is subjective and considerably depends on the experience and knowledge of 
clinicians. External computer-aided automated analysis allows for more accurate evaluation of signals, 
providing the obstetrician with a quantitative description of traces. It considerably improves the 
objectivity and reproducibility of signals interpretation [13,14]. 

Starting point of all algorithms for automated patterns detection is the estimation of so called FHR 
baseline which can be obtained as a result of removing the distortion from FHR signal. It is a common 
opinion, that just the algorithm for FHR baseline estimation determines the accuracy of quantitative 
analysis of the entire signal. The existing methods of FHR baseline estimation are presented in [8-10]. 
Event small differences from real shape of the baseline may significantly distort detection of the key 
patterns and thus lead to misdetection of fetal distress [6]. 

The paper is organized as follows. Section 2 contains definition of cost function as well as 
definitions of weighted myriad and weighted meridian. Section 3 introduces the generalized cost function. 
The section 4 shows obtained results. Conclusions complete the paper. 

2. FAMILY OF M-ESTIMATOR FILTERS 

One of the popular robust method is the method based on the maximum likelihood estimators (M-
estimators) [3-5]. The principle of M-estimators can be formulated in the following way. Assume that a 
set of N data samples x1, x2, …, xN is given, where xi=βi+vi and 1 ≤ i ≤ N. The problem is to estimate the 
location parameter βi under noise component vi. This parameter identifies the position of the probability 
density function (pdf) on the real line of data samples. The distribution of vi is not assumed to be exactly 
known. The only basic assumption is that v1,…,vN obey a symmetric, independent and identical 
distribution (symmetric i.i.d). 

The generalized form of M-estimator is defined as follows. If the cost function ρ(x, β) is chosen as 

 ( ) ( )ββρ ,log, xfx −=  (1) 
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then the M-estimate gives the ordinary maximum likelihood estimate, where x is the observed random 
variable with the f(x) probability density function, and β is the parameter to be estimated. In practical 
situations, the underlying noise pdf is difficult to estimate, and ρ(x, β) is usually chosen as a fixed 
function of residual z=x-β, that is ρ(x, β)=ρ(x-β). 

The M-estimate was originally proposed to improve robustness of statistical estimators subject to 
small deviations mentioned above. The M-estimate of β̂  is defined as the minimum of a global energy 
function 

 ( )∑
=ℜ∈

−=
N

i
ix

1

minargˆ βρβ
β

. (2) 

The function ρ(•) is called the penalty or the cost function. An M-estimator of location is defined as 

the parameter β̂  that minimizes the expression (2). The behavior of the M-estimator is completely 

characterized by the shape of ρ(•) function [5]. 

2.1. WEIGHTED MYRIAD AND MERIDIAN COST FUNCTIONS 

For the Cauchy distribution, the location parameter is called the sample myriad. For a given set of N 
independent and identically distributed samples each obeying the Cauchy distribution with common scale 
parameter, the sample myriad is a value that minimizes the following expression [1,15] 
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where: β is the location parameter, and K is the scale parameter. By assigning non-negative weights to the 
input samples, the weighted myriad is derived as a generalization of the sample myriad. For the N i.i.d. 

observations { }N

iix 1=  and the assigned weights { }N

iiw 1= , the weighted myriad can be computed from the 

following expression 
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The value of the weighted myriad depends on the dataset x, the assigned weights w and the scale 
parameter K. Two interesting cases may occur. First, when the K value tends to infinity, then the value of 
weighted myriad converges with the weighted mean. This property is called myriad linear property [8]. 
Second interesting case called modal property, occurs when the value of K parameter tends to zero. In this 
case the value of the weighted myriad is always equal to one of the most frequent values in the dataset 
[1,4,11].  

The random variable formed as the ratio of two independent zero mean Laplacian distributed 

random variables is referred to as the Meridian distribution. For the given set of N i.i.d. samples { }N

iix 1=  

each obeying the Meridian distribution with the common scale parameter δ (called medianity parameter), 
the sample meridian is given by [2] 
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The sample meridian can be generalized to the weighted meridian by assigning non-negative 
weights to the input samples, then the weighted meridian is given by 
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The behavior of the weighted meridian significantly depends on the value of its medianity 
parameter δ. Again, two interesting cases may occur. The first case occurs when the value of medianity 
parameter tends to infinity, the weighted meridian is equivalent to weighted median. This property is 
called the median property. The second interesting case, called the modal property, occurs when the 

medianity parameter δ tends to zero. In this case, the weighted meridian δβ̂  is equal to one of the most 

repeated values in the input dataset [2,16]. 

3. GENERALIZED COST FUNCTION 

Comparing the properties of the M-estimators presented in previous sections, a common features 
can be found. One of them is the behavior of the estimators when the spare parameter (e.g. K or δ) tends 
to zero. Then, for the same dataset x, the value of the weighted myriad is equal to the value of the 
weighted meridian. Another common feature of the both M-estimators is similar form of the cost 
functions. The weighted myriad cost function uses the L2 norm while the weighted meridian cost function 
uses the L1 norm. 

Let the Lp norm be defined as follows [12]: 
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where: z is an s-dimensional real valued vector (i.e. z∈ℜs). Applying the Lp norm to the weighted myriad 
cost function (4) or weighted meridian cost function (6), the generalized cost function can be expressed in 
the following form 
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where: 
p

⋅  is the Lp norm to the pth power, and the parameter ξ corresponds to the medianity parameter δ 

for p=1, and to the linearity parameter K for p=2. It should be mentioned, that for p=1 the ξ parameter is 
equal to the medianity parameter δ, but for p=2 the ξ parameter is equal to the square root of the linearity 
parameter K (i.e. K=ξ ). 

The objective function ( )βρξ
)( p  for fixed value of ξ and given dataset { }N

iix 1=  the order statistics  

of x has the following properties: 
1. ( )βρξ

)( p  is strictly decreasing for β < x1, and strictly increasing for β > xN, 

2. all local extrema of ( )βρξ
)( p  lie in the interval [x1,…,xN] , 

3. if 0 < p ≤ 1, the solution is one of the input samples (selection type filter), 
4. if 1 < p < ∞, the objective function has at most (pN-1) local extrema points and therefore a finite 

set of local minima. 
Figure 1 shows a typical shape of the ( )βρξ

)( p  cost function for different values of p and for ξ=5. 
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Fig. 1. Typical ( )βρξ
)( p

 functions for different values of p∈{0.5, 1, 1.5, 2, 2.5, 3, 3.5; 4} and ξ=5.  

Input samples are x={4.9, 0, 6.5, 10, 9.5, 1.7, 1}. 

For the given dataset { }N

iix 1=  and the assigned weights { }N

iiw 1= , let the ξβ̂  be the value minimizing the 

generalized cost function (6), i.e.: 
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Equation (9) defines the output of the proposed generalized filter. For p=1 a weighted meridian is a 

special case of ξβ̂ , and for p=2 the weighted myriad is a special case of ξβ̂ . Properties of the ξβ̂  value 

are presented in Table 1. It can be noted that the proper adjustment of ξ for Cauchy-based cost functions 
is well known and in the literature exists a few recipes to solve it (for example [4][17]). 

The fundamental problem of the weighted robust filters is generally the proper selection of weights 
and the window length. The obvious fact is that special optimization procedures exist and in the adaptive 
way it is possible to find proper values of weights. But such operations are very time consuming and the 
optimization procedure has to be repeated when the properties of signal changes. For example, the 
description of the adaptive weighted myriad filter is described in [11]. In this work for simplicity and 
without a loss of generality that problem, the weights wi=1/N for i=1,…,N and further analysis of the 
weights value are not considered. The method for estimation the output of investigated filter is the fixed-
point method presented in [1,4]. 

Table 1. Selected properties of the ξβ̂  estimator. 
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4. SIMULATION RESULTS 

In our experiment, fetal heart rate signals were used. All these signals were recorded using the 
computer aided fetal monitoring system MONAKO [7]. The signals were obtained from fetal monitor 
which provided every 250 ms the consecutive digital measurements of FHR signal. Such samples have 
value in the range from 50bpm to 210bpm, but in case of signal loss, due to bad measurement conditions, 
its value is set to zero. So, all the epochs with zero amplitude in the FHR signals can be regarded as 
impulsive noise in the signal and undergo filtration process. 

Figure 2 shows the FHR signal. The left part of figure presents a good quality FHR i.e. without 
signal loss. The right part presents a bad quality FHR signal with signal loss marked as zero value 
samples. Figure 3 shows the obtained output signal for p=2.5 and different window lengths, and figure 4 
presents the obtained output signal for p=3.0. Figure 5 shows the output signal for p=3.0, when the input 
signal contains zero amplitudes. 

It can be noticed, that for both cases (good and bad quality FHR signals), the impulsive noise was 
suppressed. For the window length greater than N>71, short loss of signal does not affect the output 
signal. In such a case, the signal loss is regarded as outliers and does not affect the filter output. 

5. CONCLUSIONS 

In a real biomedical signal analysis we deal with a noise. In case of the cardiotocography signal, the 
noise amplitude is relatively high. The impulsive noise decreases the signal quality and makes it difficult 
to analyze the signal without filtering. In this paper, the idea of the generalized filter was presented. 
Depending on the filter parameters, the output of the proposed filter can be: weighted meridian, weighted 
myriad, weighted median or weighted mean. An application of the proposed filter for the estimation of 
the fetal heart rate confirms its usefulness in real applications. The proposed method significantly 
increases the accuracy of the FHR baseline estimation in these episodes with respect to previously 
presented method. The present work solves the problem of performance and estimation of the ξ value.  

 

Fig. 2. Two examples of fetal heart rate signals. The left fragment presents a good quality FHR i.e. without signal loss episodes. The right 
one presents a bad quality FHR signal with signal loss episodes marked as the FHR samples with zero value. 
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Fig. 3. Output signal of the proposed filter obtained for p=2.5 and for the good quality FHR signal. 

 

Fig. 4. Output signal of the proposed filter obtained for p=3.0 and for the good quality FHR signal. 

 

Fig. 5. Output signal of proposed filter obtained for p=3 when the input is the bad quality FHR signal contained zero value FHR samples. 
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