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NEW FRONTIERS OF ANALYSIS, INTERPRETATION AND CLASSIFICATION
OF BIOMEDICAL SIGNALS:
A COMPUTATIONAL INTELLIGENCE FRAMEWORK

The methods of Computational Intelligence (Cl) uathg a framework of Granular Computing,
open promising research avenues in the realm afegeing, analysis and interpretation of biomedical
signals. Similarly, they augment the existing pbe¢ghof “classic” techniques of signal processing). C
comes as a highly synergistic environment in wHedrning abilities, knowledge representation, and
global optimization mechanisms and this essengaluire is of paramount interest when processing
biomedical signals. We discuss the main technotogie Computational Intelligence (namely, neural
networks, fuzzy sets, and evolutionary optimizatiedentify their focal points and elaborate on gibke
limitations, and stress an overall synergistic abtar, which ultimately gives rise to the highlyrgyiotic
Cl environment.

The direct impact of the Cl technology on ECG sligmacessing and classification is studied with
a discussion on the main directions present inliteeature. The design of information granules is
elaborated on; their design realized on a basiauoferic data as well as pieces of domain knowlasige
considered. Examples of the Cl-based ECG signalgsging problems are presented. We show how the
concepts and algorithms of Cl augment the existiagsification methods used so far in the domain of
ECG signal processing. A detailed construction m@nglar prototypes of ECG signals being more in
rapport with the diversity of signals analyzediscdssed as well.

ECG signals, Computational Intelligence, neurocotmg, fuzzy sets, information granules,
Granular Computing, interpretation, classificationierpretability.

1. INTRODUCTION

We have been witnessing a significant number abuarinformation technologies applied to ECG
signal analysis, interpretation, and classificati@long with the steady progress of hardware platfn
new more advanced algorithmic developments hava begorted and made practically relevant. There
are several compelling reasons behind this progmebgh mainly results from the exposure to the
ongoing challenges inherently associated with tbenaln of ECG signal processing, analysis, and
interpretation:

» ECG signals are one of the most important sourEesagnostic information. Their proper
acquisition and processing provide an indispensielgicle to support medical diagnosis.
Acquired signals are affected by noise and calbfiranced filtering techniques,

* A description and classification of ECG signalsl ¢at nonlinear mechanisms producing
a suitable set of features (descriptors) of thaaigo that the ensuing classifiers come with
significant discriminatory capabilities. We obseraegreat deal of various ways used to
describe ECG signals followed by the use of numenbassifiers,

* It is expected that any computerized interpretatblCG signals has to be user-friendly,
meaning that the results of classification/intetgien could be easily comprehended
(perceived) by a human user. This requirement ¢atlsan effective way of dealing with
knowledge acquisition and knowledge manipulationemiworking with plain numeric
signals.
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Quite often these problems are intertwined and ne&e& dealt with in a holistic manner. We notice
that some of them (preprocessing, filtering) regadvanced nonlinear processing techniques whele th
others (interpretation) call for knowledge-orienteid@chniques. Altogether, a comprehensive
methodological and algorithmic environment, which dffered through Computational Intelligence,
comes as a viable alternative.

In this study, we discuss the main conceptual, odlogical and algorithmic pillars of
Computational Intelligence (Cl), identify their mafeatures and elaborate on their role in biomeédica
signal processing (Sections 2 and 3). In Sectiorsedjeral linkages between the main phases of
classification problems of ECG signals and the mbuating technologies of Cl are discussed and sagdpl
with a suite of representative examples encounterduk literature. A study on a granular represton
of prototypes of ECG signals where the granulagigntifies the variability of signals being represel
is discussed in Section 5. Concluding commentofieeed in Section 6.

2. THE KEY TECHNOLOGIES OF COMPUTATIONAL INTELLIGENCE

In this section, we take a close look at the urytlagltechnologies of neurocomputing, evolutionary
optimization, and computing with information graesi We highlight their main features, contrast the
associated research agendas and then elaboratee @miergence of the paradigm of Computational
Intelligence viewed as an inherently synergistittisg, which dwells upon the strengths of its key
components.

2.1.NEURAL NETWORKS AND NEUROCOMPUTING

There exists an immensely vast body of literaturaneural networks. Neural networks are viewed
as highly versatile distributed architectures @afj a concept of universal approximation [37,1djjch
offers a very much attractive feature of approxingainonlinear (continuous) mappings to any desired
level of accuracy and in this way supporting vasialassification and mapping tasks.

The two main taxonomies commonly encountered irrowmputing concern: (a) topologies of
networks, and (b) a variety of ways of their depet@nt (training) schemes. With regard to the first
coordinate of the taxonomy, one looks at a way Imctv individual neurons are arranged together into
successive layers and a way in which processingeasized by the network, namely if this is of
feedforward nature or there are some feedback laaghén the structure. Typically, within the speaatn
of learning scenarios one distinguishes betweeersiged learning and unsupervised learning however
there are a number of interesting learning schembgh fall in-between these two extreme positions
(say, learning with partial supervision, proximbgsed learning, etc.).

One needs to be aware of some limitations of newgdlorks that start manifesting in practical
scenarios (those drawbacks might be alleviatedotmesextent but it is unlikely they will vanish
completely). From the perspective of practice etinal networks, in Table 1 we compiled a list of
advantages and shortcomings of neurocomputing.

Table 1. Neurocomputing: main advantages and liioita.

Advantages Universal approximation capabilities,

Significant learning abilities, a large repositofyalgorithms, well —developed
and validated training methods,

Distributed processing ,

Potential for significant fault tolerance,

Efficient realizations of networks .

Limitations Black-box architectures (require effort to intetgrenstructed networks),
Mostly gradient-based learning with all limitatioassociated with this type of
learning,

Non-repetitive results of learning of the netwofétspending upon initial
learning condition, parameters of the learning aigm, etc.),

Slow, inefficient learning in presence of high-dims®nal and large data sets.
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From the perspective of applications, we shouldware that neural networks could offer a highly
competitive solution however one has to proceedy yaudently with the learning process. Most
importantly, the learning results might not be tépe: running the same method while starting fram
slightly different initial configuration (say, afterent random initialization of the connections tbke
neurons) may result in quite substantial differesnage the performance of the constructed network.
Likewise setting different numeric values of tharldng environment (say, a learning rate) could lea
a different solution. A formation of the input spawhich becomes of a genuine challenge, whenndeal
with highly dimensional data and a large numbedata themselves, requires attention. Ignoring this
problem may result in a highly inefficient learnipgpbducing quite poor, non-competitive results iagk
generalization abilities.

We should stress that by no means neural netwaatkde sought as a plug-and-play technology.
To the contrary: its successful usage does reqo@eful planning, data organization and data
preprocessing, a prudent validation and a carefabrmamodation of any prior domain knowledge being
available. The black box nature of neural netwars bring some hesitation and reluctance to use the
neural network solution and one has to be preplrefdirther critical evaluation of the obtained uls.

2.2. GRANULAR COMPUTING: INFORMATION GRANULES AND THEIRPROCESSING

Information granules permeate numerous human ended¥,2,31,38]. No matter what problem is
taken into consideration, we usually express # itertain conceptual framework of basic entitielsictv
we regard to be of relevance to the problem fortrarieand problem solving. This becomes a framework
in which we formulate generic concepts adheringdme level of abstraction, carry out processing, an
communicate the results to the external environment
This remarkable and unchallenged ability of humameells on our effortless ability to construct
information granules, manipulate them and arriveaatnd conclusions. As another example, consider &
collection of time series. From our perspective ca@ describe them in a semi-qualitative manner by
pointing at specific regions of such signals. Spl&ts can effortlessly interpret various diagnosti
biomedical signals including ECG recordings. Thaestidguish some segments of such signals and
interpret their combinations. Experts can interpeenporal readings of sensors and assess the sifatu
the monitored system.

Being convinced of the qualitative underpinningstioé problem, the challenge is to develop a
computing framework within which all these reprdséion and processing endeavors could be formally
realized. The common platform emerging within tleentext comes under the name of Granular
Computing. In essence, it is an emerging paradi§grmformation processing. It brings together the
existing formalisms of set theory (interval anadydR3], fuzzy sets [38,40], rough sets [27,28,28¢ler
the same roof by clearly visualizing that in spafetheir visibly distinct underpinnings (and ensyin
processing), they exhibit some fundamental comniiesl In this sense, Granular Computing estabdishe
a stimulating environment of synergy between tligvidual approaches.

Granular Computing forms a unified conceptual aadhguting platform. Yet, it directly benefits
from the already existing and well-established emt€ of information granules formed in the settig
set theory, fuzzy sets, rough sets and others. eMBilanular Computing offers a unique ability to
conveniently translate the problem in the languaigeformation granules, it is not free from lintitans,
refer to Table 2.

Table 2. Granular Computing: a list of main advaetagnd limitations.

Advantages | Efficient knowledge representation in the formmfbormation granules
and granular models,

Transparency and high interpretability of resultoogstructs,
Diversity of formal schemes of representation ébimation granules.
Limitations | Lack of effective learning abilities,

Prescriptive nature of granular constructs,

Scalability issues.
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2.3.EVOLUTIONARY AND POPULATION-BASED OPTIMIZATION

The attractiveness of this paradigm of computiregnst from the fact that all pursuits are realized
by a population of individual —potential solutioss that this offers a very much appealing oppotyuoii
exploring or exploiting a search space in a halistanner [15]. The search is realized by a popriatia
collection of individuals, which at each iteratifgeneration) carry out search on their own and #ren
subject to some processes of interaction.

In case of genetic algorithms, evolutionary methodsd population-based methods (say, genetic
algorithms, evolutionary strategies, particle swawptimization), in general, a population undergoes
evolution; the best individuals are retained, tf@yn a new population through recombination. They a
subject to mutation. Each operator present in gaech process realizes some mechanism of exploratio
or exploitation of the search space. A generalgssinng scheme can be schematically outlined asifsll

{evaluate population (individuals)

select mating individuals (selection process)
recombination

mutation}

The above generic sequence of processing steppaated (iterated).

In contrast to evolutionary methods, in the swamamda methods [9], we encounter an interesting Way o
sharing experience. Each particle relies on its exyerience accumulated so far but it is also &dteby

the cognitive component where one looks at theoperdnce of other members of the population as well
as an overall behavior of the population.

The essential phase of any evolutionary and padpuakitased method (directly affecting its performanc

is a representation problem. It is concerned abomtty how to represent the problem in the langudige
the search strategy so that (a) the resulting Besggace is made compact enough (to make the skeasch
time consuming) and (b) is well reflective of theoperties of the fitness function to be optimizBgy.
forming a suitable search space we pay attentiavédd forming extended regions of the search space
where the fitness function does not change itsegalu

The key advantage of the methods falling under rifieric of these population-based optimization
techniques is the genuine flexibility of the fitasdsinction — there is a great deal of possibilibashow it

can be formulated to capture the essence of theiagtion problem. This translates into an ability
arrive at a suitable solution to the real-worlcktas

The inevitable challenges come with the need tessshow good the obtained solution really is and a
formation of the efficient feature space itself.

Overall, the advantages and limitations of thisadagm of computing and optimization are collected i
Table 3.

Table 3. Evolutionary and biologically inspired Cantipg; an overview.

Advantages | Mechanisms of global search,

General form of fitness function,

Abilities to deal with a wide range of structuraldgparametric
optimization.

Limitations | Construction of search space (encoding and decodeuhanisms),
Selection/adjustments of control parameters (etgssover rate,
mutation rate, recombination parameters),

Assurance of optimality of solutions.

3. COMPUTATIONAL INTELLIGENCE: EMERGENCE OF SYNERGY

Computational Intelligence can be defined in maiffeent ways. Let us start by recalling two
definitions or descriptions, which are commonly@mnatered in the literature:
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A system is computationally intelligent when it: deals with only numerical (low-level) data, has
pattern recognition components, does not use knowledge in the Al sense; and additionally when it
(begins to) exhibit (1) computational adaptivity, (2) computational fault tolerance, (3) speed
approaching human-like turnaround, and (4) error rates that approximate human performance
[6.7]

The description provided by W. Karplus comes alov:

Cl substitutes intensive computation for insight how the system works. Neural networks, fuzzy
systems and evolutionary Computation were all shunned by classical system and control theorists.
Cl umbrellas and unifies these and other revolutionary methods

The first description captures the essence of tka.derhaps today such a definition becomes
slightly extended by allowing for some new trendsl &echnologies, which are visible in the design of
intelligent systems. Nevertheless the essence o Well-captured.

The comprehensive monograph on CI [33] emphasieegiportance of synergy of the contributing and
very much complementary technologies of fuzzy sssirocomputing and evolutionary optimization. In
a nutshell, Cl is about effective and omnipreseatimanisms of synergy exploited in a variety of sask
analysis and design of intelligent systems. Thedeeanay refer to [12] and [24], which serve as
comprehensive sources of updated material on Catipnéal Intelligence.

The emergence of Cl is justifiable and one woulg $& some sense, unavoidable. Over time, being
faced with more advanced problems, increased dimealty and complexity of systems one has to deal
with, neural networks, fuzzy sets and evolutioneoynputing started to exhibit some clear limitations
This is not startling at all as their research agsnare very much distinct (as we highlighted ia th
previous sections) and they focus on different etspef the design of intelligent systems. The sgistic
environment, in which knowledge representationyies and global optimization go hand in hand,
becomes highly desirable.

One may emphasize an important and enlighteninkpgje between Computational Intelligence and
Artificial Intelligence (Al). To a significant exte, Al is a synonym of symbol-driven processing
facilities. ClI effectively exploits numeric datawever owing to the technology of Granular Computing
it may invoke computing based on information ddsamti at various levels of granularity by inherently
associating such granules with their underlyingaetios described in a numeric or semi-numeric fashi
(such as e.g., membership functions, characteriticctions or interval-valued mappings). The
granularity of results supports the user-frienditune of Cl models. They can also form an important
construct to be further used in facilitating intran with the user as well as forming linkageshwit
symbolic processing of Al constructs.

4. ECG SIGNAL ANALYSIS, CLASSIFICATION, AND INTERPRETAION:
A ClI REALIZATION

Alluding to the analysis of biomedical signals, @splly ECG ones, we can see an important
mapping between the fundamental quests existitigararea and the conceptual and computing faculties
being effectively offered by the individual techagies of CI.

Formation of feature space A design of a suitable feature space in which past€dECG signals) are
described is crucial to the effective performantamy classifier constructed at a later stage ghali
classification. Here we witness a significant rplayed by Evolutionary Computing given the factttha
the optimization problems are of combinatorial natu

Classification of ECG signals Classification procedures (classifiers) realize piags from the given
feature space (in which individual signals are dbsd) to the space of class membership (whichdcoul
be Boolean, fuzzy, or probabilistic). We distindutsetween linear and nonlinear classifiers. Hegertie
of neural networks is profoundly visible in the Ireation of nonlinear classifiers both in terms of
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realizing various forms of nonlinearities and wayswhich learning of the ensuing neural network is
being realized. Evolutionary computing arises agyaificant contributor to the realization of a
structural optimization of pattern classifiers.

Interpretation of ECG signals Here the role of information granules is critical they help interpret the
classification results (e.g., in terms of membegrsfalues of patterns to the corresponding classes)ell

as the classifiers themselves. The role of infoilonatyranules is also present when it comes to
unsupervised learning — clusters come as a visif@aifestation of a structure in a collection of ECG
signals.

In what follows, let us elaborate in more detail lbow some of these main classes of problems are
supported with the use of the technology of fuzetssHere the original data space, typically, an n-
dimensional space of real number vectd®S, is transformed via a finite collection of infortizm
granules (fuzzy sets), say;, M., ..., Ac. We say that the input space (feature space) éws granulated.
Each inputx is perceived by the following classifier/analyzérough the “eyes” of the information
granules, meaning that the following relationsisigatisfied,

g R" >[0,1f (1)

whereg stands for the mapping realized in terms of tifiermation granules. Note that the result of the
mapping is a c-dimensional vector positioned in[€h&] hypercube.

There are at least three important and practicatlyantageous aspects of the mapping realized by
information granules:

nonlinear mapping of the data space with an intent of forming information granulessaoch a way that
the transformed daiA(x1), 4(x2),,..., 4(Xn) are more suitable to construct an effective di@ssWe rely

on the nonlinearity effect that can be carefullplexed to boost the discriminatory properties loé t
transformed feature space.

The tangible advantage results directly from thalinear nature of membership functions. A properly
adjusted nonlinearity could move apart pattern®rmghg to different classes and bring closer those
regions in which the patterns belong to the sanegoay. For instance, patterns belonging to twessa
and distributed uniformly in a one-dimensional sphecome well separated when transformed through a
sigmoid membership functioA, A(xX) = 1/(1+exp(-(x-2))) and described in terms of the corresponding
membership grades. In essence, fuzzy sets plalg afra nonlinear transformation of the originedture
space. While the patterns in the original spacedeteibuted uniformly, their distribution in th@ace of
membership degrees [0,1Ju=A(X) results in a very distinct distribution: two graupf patterns are
located at the opposite ends of the unit intervth & large separation gap in-between.

reduction of the dimensionality of the feature space. While the dimensionality of the original feature
space could be quite high (which is common in meagsification problems), the dimensionality of the
space of information granules is far lowex<n. This supports the developments of the classjfiers
especially neural networks and reduces a risk omamzation resulting in poor generalization
capabilities. We often witness this role of infotroa granules in the construction of neuro-fuzzy
systems.

information granules as essential constructs supporting the development of interpretable m&debr
instance, in rule-based systems (classifiers, aeedy, the condition parts (as well as conclusions)
comprise information granules — interpretable e#jtwhich make rules meaningful. A compelling
example is displayed in Figure 1. Information glasiare formed in the feature space. Theyageally
associated with classes in the sense that fordash its degree of class membership is a logicessppn

of the activation levels (matching degrees) ofitidtvidual information granules. The flexibilityf the
logic mapping is offered through the use of thelemtion of logic neurons (fuzzy neurons) whose
connections are optimized during the design ottassifier.
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Fig. 1. An overall scheme of logic mapping betwegarmation granules — fuzzy sets formed in theudeaspace
and the class membership grades.

We note that the ongoing intensive research inatiea is reflective of the tendencies outlined above
Table 4 offers a snapshot of the main directioesgnt in the literature.

Table 4. The technology of Computational Intelligein ECG signal classification and interpretat@gpllection of selected examples.

Study Technologies of CI Category of problem
Mitra et al 2006 Rough sets Classification
Ozbay et al 2011 Type-2 fuzzy sets Clustering grfi@is and
classification
Yeh et al 2010 Fuzzy clustering Classification
Chua et al to appear, 2011 Genetic algorithmsyfsers | arrhythmia classification
Yeh et al 2010 Fuzzy sets Feature selection (kigha
description)
Lee and Wang 2008 Fuzzy sets (ontology) Signalrgesm
Meau et al 2006 Neural networks and fuzzy | Signal classification
sets (neurofuzzy system)
Engin 2004 Neural networks and fuzzy | Signal classification
sets
Acharya et al 2003 Fuzzy sets and neural Classification of heart rate
networks
Kundu et al 2000 Fuzzy sets, neural networks Signal interpretation
knowledge-based systems
Presedo et al 1996 Fuzzy sets Ischemia detection
Gacek and Pedrycz 2003 Genetic segmentation of | Preprocessing of ECG signals
signals
Gacek and Pedrycz 2006 Granulation of signals Reptation
(compactification) of ECG
signals
Pedrycz and Gacek 2001 Fuzzy automata Classificafi&€CG signals
Barro et al 1991 Fuzzy sets (fuzzy grammars) alnrhid classification
Barro et al 1990 Fuzzy sets (rule-based Classification (beat labeling)
systems)
Korurek et al 2010 Particle swarm optimization| Beat classification
and neural networks
Fei 2010 Particle swarm optimization | Arrhytmia detection
and neural networks (support
vector machines)
Moavenian and Khorrami Neural networks Arrhytmia classification
2010
Osowski et al 2008 Neural networks Arrhytmia dlisation
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The collected summaries of publications returneébggle Scholar (search done in August 2011)

ECG & fuzzy sets 5,510

ECG & rough sets 9,740

ECG & neural networks 16,400

ECG & particle swarm optimization 3,780
ECG & genetic algorithms 7,860

are also convincing stressing the visibility of tli&d technologies in ECG signal analysis and
classification.

5. DESIGNING GRANULAR REPRESENTATIVES OF ECG SIGNALA-STUDY IN
INFORMATION GRANULARITY

In this section, we present an interesting conoégranular representatives of a certain set of ECG
signals; denote it bg. To determine the best representativg,oive can consider a mean (average) of the
signals or some other statistical representatike,d median or medoid. The representatives ofrthisre
are a result of solving an underlying optimizatiproblem. For instance, the mean is a result of
minimizing a Euclidean distance between the sigaals their representative. The median results as a
solution to the same problem in which the distaiscepecified as the Hamming one. In spite of the
genuine diversity of possibilities of choosing tepresentative of, all of these variants share a striking
resemblance. The obtained representative is justegment in the same space (feature space) in vitnech
original signals were expressed. Thusgifis expressed iX OR", so is the space in which the
representative oft becomes formed. Formally speaking, the representgroblem gives rise to the
formation of the representative #f call it v, such that it represents (or approximates) athelgs in#.

We can capture the essence of this category digival representation problems in the following mem

X ={X1, X2, ..., Xn}, Xk OR" = v OR" (2)

As intuition suggests, by noting an inherent mamypite nature of the mapping (many elementg and

a single representative) and in order to accomneotiheg diversity of the signals to be represented, o
could envision that the structural complexity (agleof abstraction) o¥ is supposed to be higher than the
original signals it has to represent. This entidiég rather than being a vector of numeric entite® may
anticipate that the representative can be souglat @tain information granule being of non-numeric
character. For instance, we may envision that saphesentative could be a collection of intervals o
a family of fuzzy sets formed ov&r. The granularity of information, which is inhergnassociated with
the representative is fully reflective of the maoysne nature of the mapping of the elementst @b

a single representative. More generally, we casis@m the representative to be realized as anyulaa
construct, sayG(R") whereG(.) stands for a family of information granules ascdssed earlier.
Alluding to the concise notation of the numerictptgpe, we capture the granular counterpart bygusin
the following expression

A ={Xy, X2, ..., Xn}, X OR" =2V OG(R" (3)

The essence of the development of granular repiasess can be viewed as an optimization problem of
distribution of the available granularity of infoatron where the granularity itself is treated as an
important knowledge-based modeling resource. lrutshell, given a predefined level of information
granularity, we allocate it to the elements of threverse of discoursX in such a way the resulting
granular representative captures most of the sgvé. the signals are “contained” within the bdsirof

the information granules of the representativele ilgher the admitted level of granularityis, the less
specific (detailed) the granular representativeobes. This tendency is not encouraging. At thmeesa
time, with the lowered values of granularity, maignals are being “covered” (which is evidently
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advantageous). These two conflicting requiremeptdrto be carefully reconciled during the design of
the granular representatives.

It is worth noting that granular representatives af particular interest in interpreting, analyziragnd
comparing biomedical signals (e.g., ECG complexds®re a concept of a representative (norm) and its
variation explicitly associated with the norm be&sof relevance. For instance, one could envision
a template (representative) of normal ECG, wheseggiainular nature reflects the variability of the
existing signals and a way in which it is distrigditover time. Any comparison of a new ECG compéex i
done with the granular template and on this basertain classification could be carried out.

The expressive power of the information grarMlarticulated with respect tbis higher than the original

v in the sense thaf “covers” (includes) some entries ®f. The broader the interval built around the
numeric representativg the more data points falls within the boundshef information granul®. Note
that the length of the interval ® may vary over the entire space when moving froe @vordinate ok

to another. There are no particular restrictiomshe distribution (allocation) of granularity.

-

€

N
\\g >
Fig. 2. Formation of granular prototype aroundnibeneric representative.

We regard the level of granulari¢yto be a useful source of knowledge representatioose distribution
over X is instrumental in the maximization of the coveragquirement. More formally, we can translate
the problem into the corresponding optimizatiork tagth the objective to allocate granularity aloting
universe of discours¥ in such a way so that as many coordinateg afe included within the bounds of
V, see Figure 2. The bounds o¥ are described in the interval-like form, that is
V= [[V.,VTIV,V,1..IV,,V,]}] that is we are concerned with the interval4ypf granularity of the
representative.

The optimized performance index reads as follows

Maximize card {(i, k) [ O [V,,V/]} 4)

with the maximization realized with respect to teetor of information granularity = [e; €... €,]" with
the constraint imposed by the assumed cumulatixe &f overall granularitg”, that is:

£ =Zn:£i
i=1 %)

In this sense, we are faced with the constrainethaptimization problem. The optimization of thetos

of information granularities is quite demanding as the values of the coordsnatehe vector are linked
in a quite indirect manner with the minimized pemiance index. Clearly, the problem we are facing he
does not fall within the realm of gradient-basedtirojzation. In contrast, some techniques of
Evolutionary Computing could be of relevance here.

An overall flow of determining the granular protpgs comprises of two steps: (a) we pick up a certai
element oft, and (b) for some given value ef, we optimize a distribution of granularity so tithe
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performance index becomes maximized. The visuadizadf this two-phase process is shown in Figure 3.
Depending upon the element gfaround which the granular representation is bemgstructed, we
arrive at different values of the performance indakewise these values depend on some predetedmine
level of the granularitg*.

A 4
. o o
—_— prototype v Allocte}non V=[V' V']
24 selection —p» o ‘ >
— > granularity

Fig. 3. The optimization (distribution) of grantitg in the development of granular representativethe signals:
a two-phase development process.

Considering the overall flow of optimization, it &parent that the selection procedure depends upon
a choice of a certain value of the overall grantyag*. To avoid being potentially affected by any
particular selection, we introduce a global way eXpressing the quality of a certain granular
representativé/. What is intuitively straightforward, is an obsation that the relationship Q = &J is
non-decreasing function ef meaning that higher level of granularity avaikalbbr distribution can result

in covering more data points X. Instead of admitting a particular valuegsf(whose choice is usually
biased to some extent and implied by some desigorpgance), we sweep through a range of values of
e” starting from zero (in which case Q is typicallpse to zero) and moving to some upper bound, say
€max At the same time, we record the correspondingesbf Q (those are optimized values of Q for the
specific value ofe*). The resulting area under curve (AUC) servesaasable global indicator of the
suitability of the granular representativgformed via the formation of the granular repreéatan ofv),

auc= | Qe
0 (5)

The higher the value of AUC, the better the granudgpresentativd/ is and this quantification is of
general character independent from the requireel lgivgranularity. In this manner any choicevofve
have started with can be quantified in terms ofAkkE.

As an illustration, we consider a collection of si@rmal ECG complexes coming from the MIT-BIH
arrhythmia database shown in Figure 4. While tlegeals exhibit some similarities, there is a darta
level of variability present among them. The evabraof each of the signals in terms of the AUC
measure, see Figure 5, indicates that the fifth isrtee most suitable as a granular representatine
returns the highest value of this measure.
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Fig. 4. A collection of 6 normal ECG signals.
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Fig. 5. The AUC values computed for the ECG signals
Considering some selected valuesebdfthat is 0.05, 0.10, and 0.20 (those values aockega up for

illustrative purposes), the lower and upper bounfishe granular representations of the signal are
illustrated in Figure 6.
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Fig 6. Granular realization of the representatoreselected values ef: (a) 0.05, (b) 0.10, and (c) 0.20.

We note that the granularity of the representdtiomes more apparent with the increase of thevedio
granularity level. Furthermore the distribution granularity (the lengths of the intervals) diffegsite
substantially: it is non-existent in the neighbataf the R peak while it shows up in other regiofhs
the QRS complex.

6. CONCLUSIONS

A wealth of problems of signal processing (filtgrindiscrimination, interpretation) can be
effectively formulated and solved in the setting ©@bmputational Intelligence. CI provided new,
attractive opportunities by bringing a facet of oear processing (supported by neural networksl) an
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deliver a realization of a variable perspectivéhat problem description through information granitya
Furthermore evolutionary computing helps approaehslystem design from the perspective of structural
optimization — a unique opportunity not commonlaidable when dealing with the “standard” methods
of signal processing or classification.

We outlined the fundamentals of Computational ligehce showing that the synergy of the technologie
of fuzzy sets becomes a vital component of thegdest intelligent systems. With this regard, fuzats

or being more general, information granules, formmaportant front- and back-end of constructs of CI
By forming the front end, they help develop a digaview at ECG data, incorporate available domain
knowledge and come up with a feature space thaiastgothe effectiveness of ensuing processingequit
commonly engaging various schemes of neurocomputmgvolutionary neurocomputing. Equally
important role is played by fuzzy sets in the =ation of the back end of the overall processirgese:
they strengthen the interpretability of classifioat results as well as provide useful interpretatio
faculties to neural networks or help develop lag&ppings in the form fuzzy logic neural networks.

Our intention was to highlight the main ideas ahe principles of research agenda of Computational
Intelligence as well as show that they are weljredd with the challenges we witness in ECG signal
processing and interpretation. There have beem@euof promising studies at the junction of CI and
ECG classifier; they form a solid starting point forther progression.
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