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NEW FRONTIERS OF ANALYSIS, INTERPRETATION AND CLASSIFICATION 
OF BIOMEDICAL SIGNALS:  

A COMPUTATIONAL INTELLIGENCE FRAMEWORK 

The methods of Computational Intelligence (CI) including a framework of Granular Computing, 
open promising research avenues in the realm of processing, analysis and interpretation of biomedical 
signals. Similarly, they augment the existing plethora of “classic” techniques of signal processing. CI 
comes as a highly synergistic environment in which learning abilities, knowledge representation, and 
global optimization mechanisms and this essential feature is of paramount interest when processing 
biomedical signals. We discuss the main technologies of Computational Intelligence (namely, neural 
networks, fuzzy sets, and evolutionary optimization), identify their focal points and elaborate on possible 
limitations, and stress an overall synergistic character, which ultimately gives rise to the highly symbiotic 
CI environment.  

The direct impact of the CI technology on ECG signal processing and classification is studied with 
a discussion on the main directions present in the literature. The design of information granules is 
elaborated on; their design realized on a basis of numeric data as well as pieces of domain knowledge is 
considered. Examples of the CI-based ECG signal processing problems are presented. We show how the 
concepts and algorithms of CI augment the existing classification methods used so far in the domain of 
ECG signal processing. A detailed construction of granular prototypes of ECG signals being more in 
rapport with the diversity of signals analyzed is discussed as well. 

 ECG signals, Computational Intelligence, neurocomputing, fuzzy sets, information granules, 
Granular Computing, interpretation, classification, interpretability.  

1.  INTRODUCTION 

We have been witnessing a significant number of various information technologies applied to ECG 
signal analysis, interpretation, and classification. Along with the steady progress of hardware platforms, 
new more advanced algorithmic developments have been reported and made practically relevant. There 
are several compelling reasons behind this progress, which mainly results from the exposure to the 
ongoing challenges inherently associated with the domain of ECG signal processing, analysis, and 
interpretation: 

• ECG signals are one of the most important sources of diagnostic information. Their proper 
acquisition and processing provide an indispensible vehicle to support medical diagnosis. 
Acquired signals are affected by noise and call for advanced filtering techniques, 

• A description and classification of ECG signals call for nonlinear mechanisms producing  
a suitable set of features (descriptors) of the signal so that the ensuing classifiers come with 
significant discriminatory capabilities. We observe a great deal of various ways used to 
describe ECG signals followed by the use of numerous classifiers, 

• It is expected that any computerized interpretation of ECG signals has to be user-friendly, 
meaning that the results of classification/interpretation could be easily comprehended 
(perceived) by a human user. This requirement calls for an effective way of dealing with 
knowledge acquisition and knowledge manipulation when working with plain numeric 
signals. 
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Quite often these problems are intertwined and need to be dealt with in a holistic manner. We notice 

that some of them (preprocessing, filtering) require advanced nonlinear processing techniques while the 
others (interpretation) call for knowledge-oriented techniques. Altogether, a comprehensive 
methodological and algorithmic environment, which is offered through Computational Intelligence, 
comes as a viable alternative.  

In this study, we discuss the main conceptual, methodological and algorithmic pillars of 
Computational Intelligence (CI), identify their main features and elaborate on their role in biomedical 
signal processing (Sections 2 and 3). In Section 4, several linkages between the main phases of 
classification problems of ECG signals and the contributing technologies of CI are discussed and supplied 
with a suite of representative examples encountered in the literature. A study on a granular representation 
of prototypes of ECG signals where the granularity quantifies the variability of signals being represented 
is discussed in Section 5. Concluding comments are offered in Section 6. 

2. THE KEY TECHNOLOGIES OF COMPUTATIONAL INTELLIGENCE 

In this section, we take a close look at the underlying technologies of neurocomputing, evolutionary 
optimization, and computing with information granules. We highlight their main features, contrast the 
associated research agendas and then elaborate on the emergence of the paradigm of Computational 
Intelligence viewed as an inherently synergistic setting, which dwells upon the strengths of its key 
components.   

2.1. NEURAL NETWORKS AND NEUROCOMPUTING 

There exists an immensely vast body of literature on neural networks. Neural networks are viewed 
as highly versatile distributed architectures realizing a concept of universal approximation [37,16], which 
offers a very much attractive feature of approximating nonlinear (continuous) mappings to any desired 
level of accuracy and in this way supporting various classification and mapping tasks.     

The two main taxonomies commonly encountered in neurocomputing concern: (a) topologies of 
networks, and (b) a variety of ways of their development (training) schemes. With regard to the first 
coordinate of the taxonomy, one looks at a way in which individual neurons are arranged together into 
successive layers and a way in which processing is realized by the network, namely if this is of 
feedforward nature or there are some feedback loops within the structure. Typically, within the spectrum 
of learning scenarios one distinguishes between supervised learning and unsupervised learning however 
there are a number of interesting learning schemes, which fall in-between these two extreme positions 
(say, learning with partial supervision, proximity-based learning, etc.). 

One needs to be aware of some limitations of neural networks that start manifesting in practical 
scenarios (those drawbacks might be alleviated to some extent but it is unlikely they will vanish 
completely).  From the perspective of practice of neural networks, in Table 1 we compiled a list of 
advantages and shortcomings of neurocomputing. 

Table 1. Neurocomputing: main advantages and limitations. 

Advantages Universal approximation capabilities, 
Significant learning abilities, a large repository of algorithms, well –developed 
and validated training methods, 
Distributed processing , 
Potential for significant fault tolerance, 
Efficient realizations of networks . 

Limitations Black-box architectures (require effort to interpret constructed networks), 
Mostly gradient-based learning with all limitations associated with this type of 
learning, 
Non-repetitive results of learning of the networks (depending upon initial 
learning condition, parameters of the learning algorithm, etc.), 
Slow, inefficient learning in presence of high-dimensional and large data sets. 
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From the perspective of applications, we should be aware that neural networks could offer a highly 

competitive solution however one has to proceed very prudently with the learning process. Most 
importantly, the learning results might not be repetitive: running the same method while starting from a 
slightly different initial configuration (say, a different random initialization of the connections of the 
neurons) may result in quite substantial differences in the performance of the constructed network. 
Likewise setting different numeric values of the learning environment (say, a learning rate) could lead to 
a different solution.  A formation of the input space, which becomes of a genuine challenge, when dealing 
with highly dimensional data and a large number of data themselves, requires attention. Ignoring this 
problem may result in a highly inefficient learning producing quite poor, non-competitive results lacking 
generalization abilities.  

 We should stress that by no means neural networks can be sought as a plug-and-play technology. 
To the contrary: its successful usage does require careful planning, data organization and data 
preprocessing, a prudent validation and a careful accommodation of any prior domain knowledge being 
available. The black box nature of neural networks can bring some hesitation and reluctance to use the 
neural network solution and one has to be prepared for further critical evaluation of the obtained results.    

2.2. GRANULAR COMPUTING: INFORMATION GRANULES AND THEIR PROCESSING 

Information granules permeate numerous human endeavors [3,2,31,38]. No matter what problem is 
taken into consideration, we usually express it in a certain conceptual framework of basic entities, which 
we regard to be of relevance to the problem formulation and problem solving. This becomes a framework 
in which we formulate generic concepts adhering to some level of abstraction, carry out processing, and 
communicate the results to the external environment.  
This remarkable and unchallenged ability of humans dwells on our effortless ability to construct 
information granules, manipulate them and arrive at sound conclusions. As another example, consider a 
collection of time series. From our perspective we can describe them in a semi-qualitative manner by 
pointing at specific regions of such signals. Specialists can effortlessly interpret various diagnostic 
biomedical signals including ECG recordings. They distinguish some segments of such signals and 
interpret their combinations.  Experts can interpret temporal readings of sensors and assess the status of 
the monitored system.  

Being convinced of the qualitative underpinnings of the problem, the challenge is to develop a 
computing framework within which all these representation and processing endeavors could be formally 
realized. The common platform emerging within this context comes under the name of Granular 
Computing. In essence, it is an emerging paradigm of information processing. It brings together the 
existing formalisms of set theory (interval analysis) [23], fuzzy sets [38,40], rough sets [27,28,29] under 
the same roof by clearly visualizing that in spite of their visibly distinct underpinnings (and ensuing 
processing), they exhibit some fundamental commonalities. In this sense, Granular Computing establishes 
a stimulating environment of synergy between the individual approaches.   

Granular Computing forms a unified conceptual and computing platform. Yet, it directly benefits 
from the already existing and well-established concepts of information granules formed in the setting of 
set theory, fuzzy sets, rough sets and others. While Granular Computing offers a unique ability to 
conveniently translate the problem in the language of information granules, it is not free from limitations, 
refer to Table 2. 

Table 2. Granular Computing: a list of main advantages and limitations. 

Advantages Efficient knowledge representation in the form of information granules 
and granular models, 
Transparency and high interpretability of resulting constructs, 
Diversity of formal schemes of representation of information granules. 

Limitations Lack of effective learning abilities, 
Prescriptive nature of granular constructs, 
Scalability issues. 
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2.3. EVOLUTIONARY AND POPULATION-BASED OPTIMIZATION 

The attractiveness of this paradigm of computing stems from the fact that all pursuits are realized 
by a population of individual –potential solutions so that this offers a very much appealing opportunity of 
exploring or exploiting a search space in a holistic manner [15]. The search is realized by a population – a 
collection of individuals, which at each iteration (generation) carry out search on their own and then are 
subject to some processes of interaction. 
In case of genetic algorithms, evolutionary methods, and population-based methods (say, genetic 
algorithms, evolutionary strategies, particle swarm optimization), in general, a population undergoes 
evolution; the best individuals are retained, they form a new population through recombination. They are 
subject to mutation. Each operator present in the search process realizes some mechanism of exploration 
or exploitation of the search space. A general processing scheme can be schematically outlined as follows 
 

{evaluate population (individuals) 
select mating individuals (selection process) 
recombination 
mutation} 

 
The above generic sequence of processing steps is repeated (iterated).  
In contrast to evolutionary methods, in the swarm-based methods [9], we encounter an interesting way of 
sharing experience. Each particle relies on its own experience accumulated so far but it is also affected by 
the cognitive component where one looks at the performance of other members of the population as well 
as an overall behavior of the population.  
The essential phase of any evolutionary and population-based method (directly affecting its performance) 
is a representation problem. It is concerned about a way how to represent the problem in the language of 
the search strategy so that (a) the resulting search space is made compact enough (to make the search less 
time consuming) and (b) is well reflective of the properties of the fitness function to be optimized. By 
forming a suitable search space we pay attention to avoid forming extended regions of the search space 
where the fitness function does not change its values. 
The key advantage of the methods falling under the rubric of these population-based optimization 
techniques is the genuine flexibility of the fitness function – there is a great deal of possibilities on how it 
can be formulated to capture the essence of the optimization problem. This translates into an ability to 
arrive at a suitable solution to the real-world task. 
The inevitable challenges come with the need to assess how good the obtained solution really is and a 
formation of the efficient feature space itself.  
Overall, the advantages and limitations of this paradigm of computing and optimization are collected in 
Table 3.  

Table 3. Evolutionary and biologically inspired Computing; an overview. 

Advantages Mechanisms of global search, 
General form of fitness function, 
Abilities to deal with a wide range of structural and parametric 
optimization. 

Limitations Construction of search space (encoding and decoding mechanisms), 
Selection/adjustments of control parameters (e.g., crossover rate, 
mutation rate, recombination parameters), 
Assurance of optimality of solutions. 

3. COMPUTATIONAL INTELLIGENCE: EMERGENCE OF SYNERGY 

Computational Intelligence can be defined in many different ways. Let us start by recalling two 
definitions or descriptions, which are commonly encountered in the literature: 
 



INVITED PAPERS 

 27 

A system is computationally intelligent when it: deals with only numerical (low-level) data, has 
pattern recognition components, does not use knowledge in the AI sense; and additionally when it 
(begins to) exhibit (1) computational adaptivity; (2) computational fault tolerance, (3) speed 
approaching human-like turnaround, and (4) error rates that approximate human performance 
[6,7] 

 
The description provided by W. Karplus comes as follows: 
 

CI substitutes intensive computation for insight how the system works. Neural networks, fuzzy 
systems and evolutionary Computation were all shunned by classical system and control theorists. 
CI umbrellas and unifies these and other revolutionary methods  

 
The first description captures the essence of the area. Perhaps today such a definition becomes 

slightly extended by allowing for some new trends and technologies, which are visible in the design of 
intelligent systems. Nevertheless the essence of CI is well-captured. 
The comprehensive monograph on CI [33] emphasizes the importance of synergy of the contributing and 
very much complementary technologies of fuzzy sets, neurocomputing and evolutionary optimization. In 
a nutshell, CI is about effective and omnipresent mechanisms of synergy exploited in a variety of tasks of 
analysis and design of intelligent systems. The reader may refer to [12] and [24], which serve as 
comprehensive sources of updated material on Computational Intelligence.  
The emergence of CI is justifiable and one would say, in some sense, unavoidable.  Over time, being 
faced with more advanced problems, increased dimensionality and complexity of systems one has to deal 
with, neural networks, fuzzy sets and evolutionary computing started to exhibit some clear limitations.  
This is not startling at all as their research agendas are very much distinct (as we highlighted in the 
previous sections) and they focus on different aspects of the design of intelligent systems. The synergistic 
environment, in which knowledge representation, learning and global optimization go hand in hand, 
becomes highly desirable.  
One may emphasize an important and enlightening linkage between Computational Intelligence and 
Artificial Intelligence (AI). To a significant extent, AI is a synonym of  symbol-driven processing 
facilities. CI effectively exploits numeric data however owing to the technology of Granular Computing, 
it may invoke computing based on information described at various levels of granularity by inherently 
associating such granules with their underlying semantics described in a numeric or semi-numeric fashion 
(such as e.g., membership functions, characteristic functions or interval-valued mappings). The 
granularity of results supports the user-friendly nature of CI models. They can also form an important 
construct to be further used in facilitating interaction with the user as well as forming linkages with 
symbolic processing of AI constructs. 

4. ECG SIGNAL ANALYSIS, CLASSIFICATION, AND INTERPRETATION:  
A CI REALIZATION 

Alluding to the analysis of biomedical signals, especially ECG ones, we can see an important 
mapping between the fundamental quests existing in the area and the conceptual and computing faculties 
being effectively offered by the individual technologies of CI.  

 
Formation of feature space A design of a suitable feature space in which patterns (ECG signals) are 
described is crucial to the effective performance of any classifier constructed at a later stage of signal 
classification. Here we witness a significant role played by Evolutionary Computing given the fact that 
the optimization problems are of combinatorial nature.  

 
Classification of ECG signals Classification procedures (classifiers) realize mappings from the given 
feature space (in which individual signals are described) to the space of class membership (which could 
be Boolean, fuzzy, or probabilistic). We distinguish between linear and nonlinear classifiers. Here the role 
of neural networks is profoundly visible in the realization of nonlinear classifiers both in terms of 
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realizing various forms of nonlinearities and ways in which learning of the ensuing neural network is 
being realized. Evolutionary computing arises as a significant contributor to the realization of a 

structural optimization of pattern classifiers. 
 

Interpretation of ECG signals Here the role of information granules is critical as they help interpret the 
classification results (e.g., in terms of membership values of patterns to the corresponding classes) as well 
as the classifiers themselves. The role of information granules is also present when it comes to 
unsupervised learning – clusters come as a visible manifestation of a structure in a collection of ECG 
signals. 
In what follows, let us elaborate in more detail on how some of these main classes of problems are 
supported with the use of the technology of fuzzy sets. Here the original data space, typically, an n-
dimensional space of real number vectors, Rn, is transformed via a finite collection of information 
granules (fuzzy sets), say, A1, A2, …, Ac. We say that the input space (feature space) has been granulated. 
Each input x is perceived by the following classifier/analyzer through the “eyes” of the information 
granules, meaning that the following relationship is satisfied,  

 G:   Rn   � [0,1]c (1) 

where G  stands for the mapping realized in terms of the information granules. Note that the result of the 
mapping is a c-dimensional vector positioned in the [0,1] hypercube. 

 
There are at least three important and practically advantageous aspects of the mapping realized by 
information granules:  

 
nonlinear mapping of the data space with an intent of forming information granules in such a way that 
the transformed data G(x1), G(x2),,…, G(xN) are more suitable to construct an effective classifier. We rely 
on the nonlinearity effect that can be carefully exploited to boost the discriminatory properties of the 
transformed feature space.  
The tangible advantage results directly from the nonlinear nature of membership functions. A properly 
adjusted nonlinearity could move apart patterns belonging to different classes and bring closer those 
regions in which the patterns belong to the same category. For instance, patterns belonging to two classes 
and distributed uniformly in a one-dimensional space become well separated when transformed through a 
sigmoid membership function A, A(x) = 1/(1+exp(-(x-2))) and described in terms of the corresponding 
membership grades.  In essence, fuzzy sets play a role of a nonlinear transformation of the original feature 
space. While the patterns in the original space are distributed uniformly, their distribution in the space of 
membership degrees [0,1],  u=A(x) results in a very distinct distribution: two groups of patterns are 
located at the opposite ends of the unit interval with a large separation gap in-between.  
 
reduction of the dimensionality of the feature space. While the dimensionality of the original feature 
space could be quite high (which is common in many classification problems), the dimensionality of the 
space of information granules is far lower, c<<n. This supports the developments of the classifiers, 
especially neural networks and reduces a risk of memorization resulting in poor generalization 
capabilities. We often witness this role of information granules in the construction of neuro-fuzzy 
systems. 

 
information granules as essential constructs supporting the development of  interpretable models. For 
instance, in rule-based systems (classifiers, analyzers), the condition parts (as well as conclusions) 
comprise information granules – interpretable entities, which make rules meaningful. A compelling 
example is displayed in Figure 1. Information granules are formed in the feature space. They are logically 
associated with classes in the sense that for each class its degree of class membership is a logic expression 
of the activation levels (matching degrees) of the individual information granules.  The flexibility of the 
logic mapping is offered through the use of the collection of logic neurons (fuzzy neurons) whose 
connections are optimized during the design of the classifier. 



INVITED PAPERS 

 29 

 
Fig. 1. An overall scheme of logic mapping between information granules – fuzzy sets formed in the feature space  

and the class membership grades. 

 
We note that the ongoing intensive research in the area is reflective of the tendencies outlined above. 
Table 4 offers a snapshot of the main directions present in the literature.  

Table 4.  The technology of Computational Intelligence in ECG signal classification and interpretation: a collection of selected examples. 

Study Technologies of CI Category of problem 
Mitra et al 2006 Rough sets Classification 
Ozbay et al 2011 Type-2 fuzzy sets Clustering of signals and 

classification 
Yeh et al 2010 Fuzzy clustering Classification 
Chua et al to appear, 2011 Genetic algorithms, fuzzy sets arrhythmia classification 
Yeh et al 2010 Fuzzy sets  Feature selection (signal 

description) 
Lee and Wang 2008 Fuzzy sets (ontology) Signal description  
Meau et al 2006 Neural networks and fuzzy 

sets (neurofuzzy system) 
Signal classification 

Engin 2004 Neural networks and fuzzy 
sets 

Signal classification 

Acharya et al 2003 Fuzzy sets and neural 
networks 

Classification of heart rate 

Kundu et al 2000 Fuzzy sets, neural networks , 
knowledge-based systems 

Signal interpretation 

Presedo et al 1996 Fuzzy sets Ischemia detection 
Gacek and Pedrycz 2003 Genetic segmentation of 

signals 
Preprocessing of ECG signals 

Gacek and Pedrycz 2006 Granulation of signals Representation 
(compactification) of ECG 
signals 

Pedrycz and Gacek 2001 Fuzzy automata Classification of ECG  signals 
Barro et al 1991 Fuzzy sets (fuzzy grammars) arrhythmia classification 
Barro et al 1990 Fuzzy sets (rule-based 

systems) 
Classification (beat labeling) 

Korurek et al 2010 Particle swarm optimization 
and neural networks 

Beat classification 

Fei 2010 Particle swarm optimization 
and neural networks (support 
vector machines) 

Arrhytmia detection 

Moavenian and Khorrami 
2010 

Neural networks  Arrhytmia classification 

Osowski et al 2008 Neural networks  Arrhytmia classification 
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The collected summaries of publications returned by Google Scholar (search done in August 2011) 
 

ECG & fuzzy sets 5,510 
ECG & rough sets 9,740 
ECG & neural networks 16,400 
ECG & particle swarm optimization 3,780 
ECG & genetic algorithms 7,860 

 
are also convincing stressing the visibility of the CI technologies in ECG signal analysis and 
classification. 

5. DESIGNING GRANULAR REPRESENTATIVES OF ECG SIGNALS –A STUDY IN 
INFORMATION GRANULARITY 

In this section, we present an interesting concept of granular representatives of a certain set of ECG 
signals; denote it by X. To determine the best representative of X, we can consider a mean (average) of the 
signals or some other statistical representative, like a median or medoid. The representatives of this nature 
are a result of solving an underlying optimization problem. For instance, the mean is a result of 
minimizing a Euclidean distance between the signals and their representative. The median results as a 
solution to the same problem in which the distance is specified as the Hamming one.  In spite of the 
genuine diversity of possibilities of choosing the representative of XXXX, all of these variants share a striking 
resemblance. The obtained representative is just an element in the same space (feature space) in which the 
original signals were expressed. Thus if XXXX is expressed in X ⊂Rn, so is the space in which the 
representative of X becomes formed. Formally speaking, the representation problem gives rise to the 
formation of the representative of XXXX, call it v, such that it represents (or approximates) all elements in X. 
We can capture the essence of this category of the signal representation problems in the following manner 

 X = {x1, x2, …, xN},  xk  ∈Rn  � v ∈Rn (2) 

As intuition suggests, by noting an inherent many-to-one nature of the mapping (many elements in X and 
a single representative) and in order to accommodate the diversity of the signals to be represented, one 
could envision that the structural complexity (a level of abstraction) of v is supposed to be higher than the 
original signals it has to represent. This entails that rather than being a vector of numeric entities, one may 
anticipate that the representative can be sought as a certain information granule being of non-numeric 
character. For instance, we may envision that such representative could be a collection of intervals or  
a family of fuzzy sets formed over X. The granularity of information, which is inherently associated with 
the representative is fully reflective of the many-to-one nature of the mapping of the elements of X to 
 a single representative. More generally, we can envision the representative to be realized as any granular 
construct, say G(Rn)  where G(.)  stands for a family of information granules as discussed earlier. 
Alluding to the concise notation of the numeric prototype, we capture the granular counterpart by using 
the following expression 

 X = {x1, x2, …, xN},  xk  ∈Rn  � V ∈G(Rn) (3) 

The essence of the development of granular representatives can be viewed as an optimization problem of 
distribution of the available granularity of information where the granularity itself is treated as an 
important knowledge-based modeling resource. In a nutshell, given a predefined level of information 
granularity, we allocate it to the elements of the universe of discourse X in such a way the resulting 
granular representative captures most of the signals (viz. the signals are “contained” within the bounds of 
the information granules of the representative). The higher the admitted level of granularity ε* is, the less 
specific (detailed) the granular representative becomes. This tendency is not encouraging.   At the same 
time, with the lowered values of granularity, more signals are being “covered” (which is evidently 
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advantageous). These two conflicting requirements need to be carefully reconciled during the design of 
the granular representatives. 
It is worth noting that granular representatives are of particular interest in interpreting, analyzing, and 
comparing biomedical signals (e.g., ECG complexes) where a concept of a representative (norm) and its 
variation explicitly associated with the norm becomes of relevance. For instance, one could envision  
a template (representative) of normal ECG, where its granular nature reflects the variability of the 
existing signals and a way in which it is distributed over time. Any comparison of a new ECG complex is 
done with the granular template and on this basis a certain classification could be carried out.  
The expressive power of the information granule V articulated with respect to X is higher than the original 
v in the sense that V “covers” (includes) some entries of xk. The broader the interval built around the 
numeric representative v, the more data points falls within the bounds of the information granule V. Note 
that the length of the interval of V may vary over the entire space when moving from one coordinate of xk 
to another.  There are no particular restrictions on the distribution (allocation) of granularity. 

 

Fig. 2. Formation of granular prototype around the numeric representative. 

We regard the level of granularity ε to be a useful source of knowledge representation whose distribution 
over X is instrumental in the maximization of the coverage requirement. More formally, we can translate 
the problem into the corresponding optimization task with the objective to allocate granularity along the 
universe of discourse X in such a way so that as many coordinates of xk are included within the bounds of 
V, see Figure 2. The bounds of V are described in the interval-like form, that is   
V= [ [V1

-,V1
+] [V2

-,V2
+]...[Vn

-,Vn
+] }] that is we are concerned with the interval-type of granularity of the 

representative.  
The optimized performance index reads as follows 

 Maximize card {(i, k) |xki ∈  [Vi
-,Vi

+]}  (4) 

with the maximization realized with respect to the vector of information granularity εεεε = [ε1 ε2… εn]
T  with 

the constraint imposed by the assumed cumulative level of overall granularity ε∗ , that is: 

 
ε* = εi

i=1

n

∑
 (5) 

In this sense, we are faced with the constraint-based optimization problem. The optimization of the vector 
of information granularities εεεε is quite demanding as the values of the coordinates of the vector are linked 
in a quite indirect manner with the minimized performance index. Clearly, the problem we are facing here 
does not fall within the realm of gradient-based optimization. In contrast, some techniques of 
Evolutionary Computing could be of relevance here.  
 
An overall flow of determining the granular prototypes comprises of two steps: (a) we pick up a certain 
element of X, and (b) for some given value of ε*, we optimize a distribution of granularity so that the 
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performance index becomes maximized. The visualization of this two-phase process is shown in Figure 3. 
Depending upon the element of X around which the granular representation is being constructed, we 
arrive at different values of the performance index. Likewise these values depend on some predetermined 
level of the granularity ε*.  

 

Fig. 3.  The optimization (distribution) of granularity in the development of granular representatives of the signals: 
 a two-phase development process. 

Considering the overall flow of optimization, it is apparent that the selection procedure depends upon  
a choice of a certain value of the overall granularity ε*. To avoid being potentially affected by any 
particular selection, we introduce a global way of expressing the quality of a certain granular 
representative V. What is intuitively straightforward, is an observation that the relationship Q = Q(ε*) is 
non-decreasing function of ε* meaning that higher level of granularity available for distribution can result 
in covering more data points in X. Instead of admitting a particular value of ε* (whose choice is usually 
biased to some extent and implied by some design performance), we sweep through a range of values of 
ε∗ starting from zero (in which case Q is typically close to zero) and moving to some upper bound, say 
εmax. At the same time, we record the corresponding values of Q (those are optimized values of Q for the 
specific value of ε*). The resulting area under curve (AUC) serves as a viable global indicator of the 
suitability of the granular representative V (formed via the formation of the granular representation of v), 

 
Q(ε)d

0

ε max

∫ ε
  (5)   

The higher the value of AUC, the better the granular representative V is and this quantification is of 
general character independent from the required level of granularity.  In this manner any choice of v, we 
have started with can be quantified in terms of the AUC.  
As an illustration, we consider a collection of six normal ECG complexes coming from the MIT-BIH 
arrhythmia database shown in Figure 4. While these signals exhibit some similarities, there is a certain 
level of variability present among them. The evaluation of each of the signals in terms of the AUC 
measure, see Figure 5, indicates that the fifth one is the most suitable as a granular representative and 
returns the highest value of this measure.  

AUC= 
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Fig. 4. A collection of 6 normal ECG signals. 

 

Fig. 5.  The AUC values computed for the ECG signals. 

Considering some selected values of ε* that is 0.05, 0.10, and 0.20 (those values are picked up for 
illustrative purposes), the lower and upper bounds of the granular representations of the signal are 
illustrated in Figure 6.  
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(a) 

 

(b) 

 

(c) 

Fig 6. Granular realization of the representative for selected values of ε*: (a) 0.05, (b) 0.10, and (c) 0.20. 

We note that the granularity of the representative becomes more apparent with the increase of the allowed 
granularity level. Furthermore the distribution of granularity (the lengths of the intervals) differs quite 
substantially: it is non-existent in the neighborood of the R peak while it shows up in other regions of  
the QRS complex.  
 
 

6. CONCLUSIONS 

A wealth of problems of signal processing (filtering, discrimination, interpretation)  can be 
effectively formulated and solved in the setting of Computational Intelligence. CI provided new, 
attractive opportunities by bringing a facet of nonlinear processing (supported by neural networks) and 
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deliver a realization of a variable perspective at the problem description through information granularity. 
Furthermore evolutionary computing helps approach the system design from the perspective of structural 
optimization – a unique opportunity not commonly available when dealing with the “standard” methods 
of signal processing or classification.    
 
We outlined the fundamentals of Computational Intelligence showing that the synergy of the technologies 
of fuzzy sets becomes a vital component of the design of intelligent systems. With this regard, fuzzy sets 
or being more general, information granules, form an important front- and back-end of constructs of CI. 
By forming the front end, they help develop a suitable view at ECG data, incorporate available domain 
knowledge and come up with a feature space that supports the effectiveness of ensuing processing, quite 
commonly engaging various schemes of neurocomputing or evolutionary neurocomputing.  Equally 
important role is played by fuzzy sets in the realization of the back end of the overall processing scheme: 
they strengthen the interpretability of classification results as well as provide useful interpretation 
faculties to neural networks or help develop logic mappings in the form fuzzy logic neural networks. 
  
Our intention was to highlight the main ideas and the principles of research agenda of Computational 
Intelligence as well as show that they are well aligned with the challenges we witness in ECG signal 
processing and interpretation. There have been a number of promising studies at the junction of CI and 
ECG classifier; they form a solid starting point for further progression.   
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