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DATA CLEANING OF MEDICAL DATA SETS 

Each database system evolves during the time. If the primary database schema was designed only to store 
the limited scope of abstraction classes then the database system improvement process is performed in traditional 
way (using alter table, update table and create table commands). Anyhow it could be impossible, from the 
engineering point of view, or too expensive from the economic point of view. Transferring the data from one 
database schema to another database schema one has to perform an additional step called Data Cleaning. This 
paper present a basic sketch for the data cleaning theory based on the materialised views idea and corresponding 
data cleaning environment. The proposed methodology is suitable not only for the data verification but also for 
the reengineering of the broken references between data fields, recreation of missing rows and data types 
conversion. 

1. INTRODUCTION 

Data Cleaning process is one the basic tasks performed during creation of the Data 
Warehouses (Data Cleaning is a phase of the ETL - Extraction, Transformation, Loading), 
during modification and integration of database schemas (so called evolution of the database 
schema) and during the process of Knowledge Discovery in Databases. The managed 
amount of data undergoes continuous evolution together with the evolution of the computer 
system. If the primary database schema was designed only to store the limited scope of 
abstraction classes then the database system improvement process performed in traditional 
way (using alter table, update table and create table commands) could be impossible from 
the engineering point of view or too expensive from the economic point of view. The only 
reasonable solution is to transfer all the information stored in the faulty database system to 
the new, improved and corrected database schema. We meet a similar scope of problems 
while evolving The Medical Database System for Management of Patients with Implanted 
Pacemakers “IMPULS” [5,15].  

To solve the problem, the detection of invalid and incoherent values, correction and 
recreation of missing information in the data repository of patient’s diseases was necessary. 
The missing values in the clinical trail database were reconstructed using partial information 
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stored in the evolved database system. This task is commonly known as the problem of Data 
Cleaning. In the research we created a theory and implemented a suitable environment for 
designing the data cleaning process coherent with this theory. 

2. DATA CLEANING ISSUES  

Many scientists are searching for the perfect way to clean the data and make them 
appropriate for the desired purposes [1,4,6,7,8,10,12,13,14]. Some of the papers do not 
differentiate between the data cleaning and the Extraction Transformation Loading process 
performed during the creation of the data warehouse [12]. We think it is wrong since data 
cleaning is performed not only during the process of ETL but also during the process of 
Knowledge Discovery on the non-warehouse data sets too. The most popular field where 
data cleaning methods are used nowadays is the research in genome. Just to mention the 
BIO-AJAX project [11]. Generally the process of Data Cleaning consists of several tasks. 
One common classification of those tasks was introduced by Rahm and Do [3] and since 
now this work is concerned as a survey in the field of Data Cleaning. The presented 
classification differentiates issues into two classes of problems: found during the process of 
cleaning of a single data source (Single-source) and several data sources (Multi-source). 
Both classes of problems are then divided to schema level problems and instance level 
problems. 

According to their classification common single-source schema level problems 
enumerate: illegal values, violated attribute dependencies, uniqueness violation and 
referential integrity violation.  The single-source instance level problems are: missing 
values, misspellings, cryptic values and abbreviations, embedded values, misfiled values, 
violated attribute dependencies, word transpositions (for example a first name present one 
time before second name some other time after second name in a string), duplicated records, 
contradiction records, wrong references.  

Multi-source schema level problems are:  naming conflicts (when the same attribute is present 
in different data sources under different name or two different attributes are present under the same 
name), structural conflicts (for example when one abstraction is present in one schema as a set of 
columns while in other as a set of rows or when different schemas use different data types to 
represent the same abstraction). The scope of instance-level problems present during integration of 
two or more data sources is much the same as the scope of instance-level problems presents while 
data cleaning a single-source. Even though the above classification is valid, to illustrate our own 
solution in a suitable way we suggest a simplified way of classification presented in Table 1.  
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Table 1. Simplified classification of data cleaning problems. 

Problem class Example 
Detection of duplicate values [1, 2] name1=“J.Kowalski”, born1=1978  

name2=“John Kowalski” , born2=1978 
Detection of invalid values name1= “J.Smith” , hight1=178  

name2= “J.Kowalski”, high2=”tall”  
Detection of inconsistent values born1= “1978”, age1=26,id1=781278xxxxx 

born2=“1960”,age2=30,id2=781260xxxxx 
Detection of broken or invalid references name1=”Kowalski”,DepartmentID_fk1=14 

name2=”Nowak”,DepartmentID_fk2=16 
name3=”Smith”,DepartmentID_fk3=15 
DepartmentID_pk1=14,name1=”Technical” 
DepartmentID_pk2=15,name2=”Research” 

Detection of missing values model1=”Neo 02-Up”,serial_no1=5076096 
model2=”LCP 201”,serial_no2=0 
model3=”TRIOS 02-UP”,serial_no3=50464083 

Detection of values out of scope Id1=1,height1=178 
Id2=2,height2=-160 

Separation of values embedded inside 
others 

Name1=”Mr. John Smith” 
Name2=” J. Kowalski PhD” 
Forename1=”John”, surname1=”Smith”, title1=”Mr.” 
Forename2=”J.”, surname2=”Kowalski”, title2=”PhD.” 

 
This classification does not differentiate of single-source cleaning problems and 

problems of multi-source integration. Problems relevant to integration issues are solved by 
early fusion of all necessary data sources, before the main data cleaning process.  

Nowadays, the main goals of data cleaning research are: creating declarative data 
cleaning query languages (AJAX [6]), developing specialised ETL software applications 
(ARKTOS [7], Potter's Wheel [8], AJAX [6]) and developing algorithms used during the 
data cleaning process. [1, 2, 9, 10]. Presented solutions usually concentrate on the data 
warehouse data cleaning applications. But such applications are usually associated with 
particular database management system or aim one particular problem, for example 
verification of business data.  

There are two main ways of defining the data cleaning process: using declarative data 
cleaning query language [4, 6] or using graphical user interface and a set of predefined 
transformations [8]. The first way is suitable when one has to adapt the data cleaning 
process to one particular task, even though requires a lot of effort and assumes the user to 
have programming skills. The second way, usually based on predefined set of 
transformations [8], makes the process of data cleaning design intuitive and efficient at one 
hand but the process of adaptation very difficult and time consuming at other hand.  

Still important issue in designing the data cleaning process is the problem of 
determining the origin of invalid values. Using lineaging one could designate the primal 
reason of the anomaly observed in the cleaned data source. Research papers present two 
main ways for obtaining such information. The first way assumes that algorithms used 
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during data cleaning process store some additional information about the source data for 
performed transformations. The second way uses advanced analysis algorithms to perform 
backtracking about the origin of the source data based on existing result sets [9]. 

3. THE DATA CLEANING METHODOLOGY  

The term Data Cleaning Methodology is used to describe both the design of the Data 
Cleaning process and the way data cleaning process works itself. The idea of the proposed 
methodology could be illustrated using the ordered graph of relation transformations 
(Fig. 1)  

Terms Ri, Rj are relations and the term Pi,j is understood as the set containing all 
transformations between relation Ri and relation Rj. The term Rm...k is used to designate all 
relations directly preceding the relation Rj and Pj,j could be especially an empty set. The 
following expression designates the list of all transformations bounded with the relation Rj 
(1): 

  (1) , , ,... ...: m j n j k j j jjP P P P P∪ ∪ ∪ ∪ ∪= ,
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Fig. 1. Example graph of relation transformations 

The pair (Pj,Rj) is called a „Data Cleaning Step”  and is designated as Kj.  Furthermore 
the Data Cleaning Step during the Data Cleaning Process is physically represented as an 
object in a programming sense (i.e. a program unit). The classification of transformations 
based on the localisation of the output is presented in Table 2. 

 MM - 132 



MODELLING AND MONITORING SYSTEMS 

Table 2. Classification of transformations based on the localization of the output. 

Symbol Description 
Transformations that generate new attributes in relation R 

PM transformations that duplicate attributes from the SQL query result 
PN transformations that generate new attributes 

Transformations that do not generate attributes are classified based on the place in the 
timeline of the transformation process 

PB transformations executed before the first database fetch 
PR transformations executed after the fetch from the database 
PE transformations executed after the last fetch from the database 

 
For each data cleaning step Kj the following relationship is valid (2): 

 : B M N R E
j j j j j jP P P P P P= ∪ ∪ ∪ ∪  (2) 

An assumption is made that each transformation that belong to a particular data 
cleaning step has got a unique order number inside this data cleaning step. When the data 
cleaning step Kj defines hj transformations each single transformation defined in this data 
cleaning step is going to be designated as Pj[n], where n is the order number inside the data 
cleaning step. The following relationship is valid (3),(4): 

 :j jP h=  (3) 

Where jP represent the cardinality of the set jP  (i.e. the number of elements). 

 [1] [2] [ 1] [ ] [ 1] [ ]: ( , ,..., , , ,...,
jj j j j n j n j n j hP P P P P P P− +=  (4) 

The previously defined (1) set Pj is an ordered set. The transformation Pj[n] directly 
precede the transformation Pj[m] inside the data cleaning step Kj, when n=m-1 (4).  

When x stands for the result of a transformation, and A stands for a set of some input 
data, (in peculiarity an empty set) the following equation (5): 

 [ ] ( )j nx P A=  (5) 

(5) is read: „The result of the transformation Pj[n] on a set A is x”, where the datatype 
of the value x is unrestricted.  

Designating the operation of relation creation with symbol „→”, the expression (6): 

 [ ] [ ]( ) , M N
j m m j j m j j

m

P A R whereP P P→ ∈U ∪  (6) 
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We mean: “The set of results generated by transformations that generate attributes 
creates the relation related with the given data cleaning step”. 

The preceding notation is going to be used to illustrate the exemplary data cleaning 
issue. The algorithm of data cleaning step processing used in the presented methodology 
(Fig. 2). 

4. DESIGNING THE DATA CLEANING PROCESS 

To illustrate the process of the data cleaning process design for the purposes of 
Knowledge Discovery we’ve decided to present a simple example addressing common data 
cleaning issue. Assume there is a medical trail table containing information about 
implantation of pacemakers. Assume the form of the data stored in the medical database is 
dirty, as presented in the Fig. 3.  

 
PatientID Pacemaker Implantation_date Control_date Death_date 

1 “MEDTRINIC SC100 #2000413” 08-12-1992 “Dec 24 1993 “  “10 dec 2001” 

2 “ST JOHN MED #03214A23” 10-09-1999 “Dec 24 2000 “ None 

3 “SG-200 Bit. SN3254132” 12-03-1997 “09 24 1998” “15 September 2004” 

Fig. 3. Example of a dirty data set1 

Assume there is a strong need to transform the data to a form understandable by some 
kind of a Knowledge Discovery algorithm. For convenience of the knowledge discovery 
engineer each case has to receive unique number. Both the case unique number and the 
patient number have to be preceded with the two-digit id of the implantation centre. 
Moreover the Pacemaker field has to be separated into fields containing the name of the 
producer, model and serial number. The date of the first pacemaker control and the date of 
death have to be converted into number of days after implantation. As a result of the data 
cleaning step the algorithm should return the number of processed rows. Due to such 
conditions the cleaned data have to be transformed into the data set presented in the Fig. 4. 

                                                 
1 Legal notice: Both the name of the pacemaker producer and the presented periods of time are fictional. 
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Start

Prepare place in the database
for storing the resultant relation

Prepare place in the system memory
for storing partial results of the transformations

and initialize them

Execute in accordance with the order defined 
in the data cleaning step all PB

Execute the SQL query

Fetch one row from database

Success  ?

True

False

Execute in accordance with the order defined
in the data cleaning step all PM

Execute in accordance with the order defined
in the data cleaning step all P PN R,

Execute in accordance with the order defined
in the data cleaning step all PE

End
 

Fig. 4. The algorithm of data cleaning step processing. 
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CaseID ID Implantation Producer Model Serial Control Death 

22000001 22000003 12-03-1997 BITTRONIC SG-200 3254132 561 2744 

22000002 22000001 08-12-1992 MEDTRINIC SC100 2000413 381 3289 

22000003 22000002 10-09-1999 ST JOHN MED None 0314A23 471 None 

Fig. 5. Example of a clean data set1 

 
For such terms lied down we define the following transformations (in the form of 

functions): 
P1[1] = transcribe the given value (value) 
P1[2] = transcribe the column from the retrieved row(column_id) 
P1[3] = transcribe the column from the retrieved row(column_id) 
P1[4] = transcribe the column from the retrieved row(column_id) 
P1[5] = transcribe the column from the retrieved row(column_id) 
P1[6] = transcribe the column from the retrieved row(column_id) 
P1[7] = add 1 to the given value (value) 
P1[8] = generate integer identifier preceded with the given prefix (id, prefix)  
P1[9] = generate integer identifier preceded with the given prefix (id, prefix)  
P1[10] = transcribe the given value (value) 
P1[11] = generate three element array with producer, model and serial number 

substracted from the given string (value) 
P1[12] = transcribe the given value (value) 
P1[13] = transcribe the given value (value) 
P1[14] = transcribe the given value (value) 
P1[15] = transform the given string into valid date format 
P1[16] = count the number of days between the start_date and end_date (start_date, 

end_date) 
P1[17] = transform the given string into valid date format 
P1[18] = count the number of days between the start_date and end_date (start_date, 

end_date) 
P1[19] = transcribe the given value (value) 
 
Where: 
P1[1] ∈ PB 
P1[2], P1[3], P1[4], P1[5], P1[6] ∈ PM 
P1[7], P1[11], P1[15], P1[17] ∈ PR 
P1[8], P1[9], P1[10], P1[12], P1[13], P1[14], P1[16], P1[18] ∈ PN 
P1[19] ∈ PE 
 
In such case the solution of the problem resolves to plan the following 

transformations: 
ImplantationCentreID=P1[1](22) 
PatientID=P1[2](0) 
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Pacemaker=P1[3](1) 
ImplantationDate=P1[4](2) 
ControlDate=P1[5](3) 
DeathDate=P1[6](4) 
Counter=P1[7](Counter) 
CaseID=P1[8](Counter, ImplantationCentreID) 
ID=P1[9](PatientID, ImplantationCentreID) 
Implantation=P1[10](ImplantationDate) 
ProducerModelSerial=P1[11](Pacemaker) 
Producer=P1[12](ProducerModelSerial[0]) 
Model=P1[13](ProducerModelSerial[1]) 
Serial=P1[14](ProducerModelSerial[2]) 
Date1=P1[15](ControlDate) 
Control=P1[16](Implantation, Date1) 
Date2=P1[17](DeathDate) 
Death=P1[18](Implantatio, Date2) 
RowsProcessed=P1[19](Counter) 
 
Where the initial value of the partial results are: 
Counter=0 
ProducerModelSerial=[None, None, None]  
Date1=None 
Date2=None 
 
And the database types of the resulting relation are: 
 
CaseID=Integer 
ID=Integer 
Implantation=Date 
Producer=Char(20) 
Model=Char(20) 
Serial=Char(20) 
Control=Integer 
Death=Integer 
 
The table notation of transformations is presented in the Table 3. 

5. IMPLEMENTATION  

The prototype application has been implemented using Python programming language 
[11]. The visualisation of the data cleaning process as well as the graphics user interface of 
the data cleaning development environment has been implemented using the platform 
independent QT library [12] and its port for the python language – PyQT [13]. The data 
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cleaning project files as well as the result files are stored in XML documents. To connect to 
the database we've created our own Python ODBC port based on the c-types library [14]. 
We have also created ports for other Python database modules (mxODBC, win32all.odbc, 
DynWin.odbc). 

Table 3. The table notation of transformations. (Design of the programming unit) 

ID @ SET NAME INIT EQUAL 
   INC  add 1 to the given value (value) 
   GENERATE_ID  generate integer identifier preceded with the given prefix (id,prefix) 

   SUBSTRACT  generate three element array with producer, model and serial number substracted 
from the given string (value) 

   GET_CLEAN_DATE  transform the given string into valid date format 
   GET_DIFFERENCE_DAYS  count the number of days between the start_date and end_date (start_date,end_date)
P1[1] No PB ImplantationCentreID  22 
P1[2] No PM PatientID Char(20) Query[0] 
P1[3] No PM Pacemaker Char(40) Query[1] 
P1[4] No PM ImplantationDate Date Query[2] 
P1[5] No PM ControlDate Char(20) Query[3] 
P1[6] No PM DeathDate Char(20) Query[4] 
P1[7] No PR Counter 0 self.INC(self.Counter) 
P1[8] Yes PN CaseID Integer self.GENERATE_ID(self.Counter,self.ImplantationCentreID) 
P1[9] Yes PN ID Integer self.GENERATE_ID(self.PatientID,self.ImplantationCentreID) 
P1[10] Yes PN Implantation Date self.ImplantationDate 
P1[11] No PR ProducerModelSerial [None,None,None] self.SUBSTRACT(self.Pacemaker) 
P1[12] Yes PN Producer Char(20) ProducerModelSerial[0] 
P1[13] Yes PN Model Char(20) ProducerModelSerial[1] 
P1[14] Yes PN Serial Char(20) ProducerModelSerial[2] 
P1[15] No PR Date1 None self.GET_CLEAN_DATE(self.ControlDate) 
P1[16] Yes PN Control Integer self.GET_DIFFERENCE_DAYS(self.Implantation,Date1) 
P1[17] No PR Date2 None self.GET_CLEAN_DATE(self.DeathDate) 
P1[18] Yes PN Death Integer self.GET_DIFFERENCE_DAYS(self.Implantation,Date2) 
P1[19] No PE RowsProcessed  self.Counter 

6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

The above solution presents high flexibility and potential, making the prosecuted 
research in this matter well purposeful. The use of a methodology based on the idea of 
materialised views as well as the use of the Python scripting language seems to be a good 
decision. The empirical evidence of such thesis is the successful evolution of The Medical 
Database System for Management of Patients with Implanted Pacemakers “IMPULS” 
System Database. Using the presented methodology we have verified the medical trail 
database, repaired the broken references between data fields, recreated missing rows and 
performed data type conversion. Thanks to the methodology based on the idea of 
materialised views the detection of faults in the implemented data cleaning algorithms 
became as simple task as debugging typical applications in a high level language. Therefore 
the time necessary to implement a data evolution solution has been highly reduced. During 
the research process we've developed basic sets of most commonly used transformations. 
We have perceived a great potential in this methodology as a basement for a Knowledge 
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Discovery environment. We plan to develop appropriate algorithms and transformations for 
the presented methodology. We also plan to extend the presented methodology to parallelise 
the process of data cleaning along the local area network. 
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