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ARE INFINITE DIMENSIONAL MODELS APPLICABLE IN MODELLING  
AND ANALYSIS OF CANCER CHEMOTHERAPY? 

Drug resistance and phase dependence have been regarded by many authors as the main obstacles against 
successful cancer chemotherapy. We propose a model which takes into account both these phenomena and give a 
tool to use phase specificity as an advantage rather than a fault and make it resistant of drug resistance.  
It combines models that so far have been studied separately, taking into account both the phenomenon of gene 
amplification and drug specificity in chemotherapy, in their different aspects. The mathematical description is 
given by an infinite dimensional state equation with a system matrix, the form of which enables decomposition 
of the model into two interacting subsystems. While the first one, of finite dimension, can have any form, the 
second one is infinite dimensional and tridiagonal.  

1. INTRODUCTION 

Models based on infinite number of state equations may be applied to a variety of 
systems. In our previous papers e.g. [1], [2] studies of infinite dimensional models may 
were shown to lead to compact results, convenient in further analysis, which would be 
impossible or very difficult to obtain in finite dimensional approximation.  

In this paper phase-specific control of the drug-sensitive cancer population will be 
addressed. Actually, each drug affects cell being in particular phase and it makes sense to 
combine these drugs so that their cumulative effect on the cancer population would be the 
greatest. So far, phase-specific chemotherapy has been considered without any regard to 
problems stemming from increasing drug resistance. Combining infinite dimensional model 
of drug resistance with the phase-specific model of chemotherapy should move 
mathematical modelling much closer to its clinical application.  
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2. BRANCHING RANDOM WALK MODEL IN DRUG RESISTANCE MODELS 

The original model and its properties were thoroughly discussed in [4], [5]. However, 
the basic underlying biological background remains the same also for the subject of this 
paper and therefore needs to be introduced in brief. 

In this section certain model of cell population with evolving drug resistance caused 
by gene amplification or other mechanisms is presented. The model which follows the idea 
proposed in [2] is general enough to accommodate different interpretations. 

We consider a population of neoplastic cells stratified into subpopulations of cells of 
different types, labelled by numbers i = 0,1,2, … . If the biological process considered is 
gene amplification, then cells of different types are identified with different numbers of 
copies of the drug resistance gene and differing levels of resistance. Cells of type 0, with no 
copies of the gene, are sensitive to the cytostatic agent. Due to the mutational event the 
sensitive cell of type 0 can acquire a copy of gene that makes it resistant to the agent. 
Likewise, the division of resistant cells can result in the change of the number of gene 
copies. The resistant subpopulation consists of cells of types i = 1,2, … . The probability of 
mutational event in a sensitive cell is of several orders smaller than the probability of the 
change in number of gene copies in a resistant cell. Since we do not limit the number of 
gene copies per cell, the number of different cell types is countably infinite. 

Cell division and the change of the number of gene copies are stochastic processes 
with the following hypotheses: 

1. The lifespans of all cells are independent exponentially distributed random 
variables with means 1/λι for cells of type i. 

2. A cell of type i ≥ 1 may mutate in a short time interval (t, t+dt) into a type i+1 cell 
with probability bi dt + o(dt) and into type i−1 cell with probability di dt + o(dt). A 
cell of type i = 0 may mutate in a short time interval (t, t+dt) into a type 1 cell with 
probability α dt + o(dt), where α is several orders of magnitude smaller than any of 
bi and di. 

3. The drug action results in fraction ui of ineffective divisions in cells of type i 
(hence 0 ≤ ui ≤ 1) 

4. The process is initiated at time t = 0 by a finite population of cells of different 
types. 

If we denote Ni(t) the expected number of cells of type i at time t, and we assume  the 
simplest case, in which the resistant cells are insensitive to drug's action, and there are no 
differences between parameters of cells of different type, the model is described by the 
following system of ODE’s 
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So far, only the simplest case has been investigated, in which the resistant cells are 
completely insensitive to drug's action and there are no differences between parameters of 
cells of different type: 

  (2) 

[ ]

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥+++−=

+++−=

+−−=

−+

K

&

K

&

&

2),()()()()()(

)()()()()()(

)()()()(21)(

11

02111

1000

itbNtdNtNdbtNtN

tNtdNtNdbtNtN

tdNtNtNtutN

iiiii λ

αλ

αλ

However, using the same line of reasoning that has been applied to that case, it is also 
possible to analyse less simplified model. If it is assumed that the parameters can vary for 
arbitrarily chosen finite number of cells and are the same only for the infinite dimensional 
tail of the system, the following model can be investigated: 
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Moreover, multivariable control is allowed, meaning that either certain types of the 
resistant cells can be affected by chemotherapy or that different drugs are being used. One 
possible control problem is establishing constant control u that stabilises the infinite 
dimensional system. In biological terms, it refers to calculating constant dose of 
chemotherapeutic agent that suppresses growth of the resistant subpopulation. However, the 
constant treatment protocol, which guarantees decay of the cancer population after 
sufficiently long time, is not realistic. Most of all, it does not take into account the 
cumulated negative effect of the drug upon normal tissues. To make the solution more 
realistic, it is justifiable to find the optimal control, which minimises the performance index: 
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where r1, r ≥ 0 are weighing factors. The idea on which such optimisation is based is to 
minimise the resistant cancer subpopulation at the end of therapy with simultaneous 
minimisation of negative cumulative effect of the drug represented by the integral 
component. 
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3. PHASE SPECIFIC CONTROL OF DRUG RESISTANT POPULATION  

The cell cycle is composed of a sequence of phases undergone by each cell from its 
birth to division. Actually, each drug affects cell being in particular phase and it makes 
sense to combine these drugs so that their cumulative effect on the cancer population would 
be the greatest. So far, phase-specific chemotherapy has been considered only in the finite-
dimensional case, without any regard to problems stemming from increasing drug resistance 
e.g. [6]. Combining infinite dimensional model of drug resistance with the phase-specific 
model of chemotherapy should move mathematical modelling much closer to its clinical 
application. 

Once again, some modification of the assumptions underlying mathematical model 
presented at the beginning of this section should be introduced. The sensitive subpopulation 
consists of two types of cells: type i = 0, being in the phase G1+S and i = 1, being in the 
phase G2M. The phase-specific drug affects only cells of type i = 1. Then the following set 
of equations can represent the system dynamics 
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Similarly, multidrug therapy including blocking drugs as well as the killing agent 
could be analysed in the same way, as presented in the subsequent sections. 

Thus the system belongs to the following class of state equation models: 

 , (6) NuN
m

i
ii ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑

=0

BA&

where N = [N0 N1 N2 ... Ni ...]T is an infinite dimensional state vector, A – the system matrix 
of the following form: 
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u(t) – m-dimensional control vector u = [u0 u1 u2 ... um–1 ]T, 01, 02, 03– zero matrices of 
dimensions ∞ x l–1, l–2 x ∞ and ∞ x ∞,  respectively, l > m. 

It is important to note that model parameters satisfy the following relations: 
a3 > a1 > 0, and a2 < 0. However, full problem analysis can be done in other possible cases 
(e.g. when no additional conditions are to be satisfied by parameters a1, a3), using exactly 
the same line of reasoning. 

The performance index to be minimised is given by (4). 
First, let us consider the infinite dimensional tail without the influx of cells Nl–1:  

  (8) 
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Using methods similar to that shown in our previous works devoted to biomedical 
modelling it is possible to show that for initial condition Ni(0) = δik (Kronecker delta), i.e. 
Nk(0) = 1, Ni(0) = 0 for i ≠ k, following relations hold true: 
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where ,  - Laplace transforms of  and )(sN k
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(superscript k is introduced to underscore the index of the state variable with non-zero initial 
condition). Now, let us assume that k = l. Then, after calculating inverse Laplace transform 
the following formulae are obtained: 
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where I1(t) – modified Bessel function of the first order. 
It should be emphasised that the assumption about initial condition does not introduce 

any additional constraints to applicability of the model. Due to linearity of the infinite 
dimensional tail any finite non-zero initial condition can be incorporated into the final 
solution. 

Using an asymptotic expansion of (12) it has been found that, assuming a3 ≥ a1, a 
stability condition for the autonomous system is given by 

 312 2 aaa −≤  (13) 

Now we can determine the following transfer function: 
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Let us now introduce the following notation: 

 ,  C = [0,...,0,1] – l-dimensional vector (17) 
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Then, applying standard control theory techniques, the following relation holds true 
for u (t)= 0 
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Taking into account linear form of such system, it is possible to present the model in 
the form of block diagram shown in Fig.1. This makes it possible to analyse dynamical 
properties of the closed-loop system.  

K2(s)

K1(s)

Nl−1(s)Nl (s)

 

Fig. 1. Block diagram of the system without control 

Let us now consider the problem of stabilisation of the system by a constant control.  
Then, the transfer function K2(s) representing the finite dimensional subsystem in the 

Fig. 1 takes the following form: 
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Again, standard control theory techniques, including the Nyquist criterion can be 
applied to find stability conditions for such system.  

The system description in the form of infinite number of ODEs, although may be used 
in different approaches to optimisation problems that will be considered in next section, is 
not very convenient. Instead, a model transformation into integro-differential one may be 
proposed.  

Let us denote 
 Ck = [cj,], ck = 1, cj = 0 for j ≠ k, i = 1,2, ... l−1. 
Let us also assume the initial conditions Ni(0) = 0 for i > l − 1 (once again it should be 

stressed that any finite non-zero initial condition can be incorporated into the final solution). 
Then, the last equation in the first subsystem, influenced directly by control, can be 
transformed into an integro-differential form: 
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where k1(t) is the inverse Laplace transform of K1(s). 
After transformation of the system description presented in the previous section, it is 

possible to address effectively the arising optimal control problem. 
Due to particular form of both performance index and the equation governing the 

model it is possible to find the solution to the problem, applying an appropriate version of 
Pontryagin's maximum principle. It is important to notice that, although the performance 
index (4) seems to consist of two components - a sum and an integral, the sum actually 
involves another integral, which stems from (17. Therefore, it should be rewritten to 
emphasise this relation: 
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A number of formulations of necessary conditions for the optimisation problem for 
dynamical systems governed by integro-differential equations can be found in literature. 
However, they usually either are too general to be efficiently applied in such particular 
problem or have too strong constraints for example smoothness of the control function. We 
have followed the line of reasoning presented in [1], it is possible to derive the necessary 
conditions for optimal control which allow us to find that the optimal control must be of 
bang-bang type. Then, to find optimal number of switches and switching times, a gradient 
method can be developed, following the line of reasoning presented in [3]. 

4. CONCLUSION 

In this paper we have shown applicability of infinite-dimensional models to analysis 
and design of cancer chemotherapy. Basing on model decomposition, it is possible to 
analyse analytically and numerically some of their dynamical properties. The transformation 
of system description into one integro-differential equation allows solving an optimal 
control problem which takes into account also a cumulative negative effect on critical 
normal tissues.  
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