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FINITE DIMENSIONAL MODELS OF DRUG RESISTANT 
AND PHASE SPECIFIC CANCER CHEMOTHERAPY 

The problem of modelling drug resistance and phase specificity of cancer chemotherapy using finite 
dimensional models were considered. We formulate optimal control problems arising in protocol design for such 
models and discuss research issues resulting from these formulations. 

1. INTRODUCTION 

Mathematical modelling of cancer chemotherapy has had more than four decades of 
history. It has contributed to the development of ideas of chemotherapy scheduling, multi-
drug protocols, and recruitment. It has also helped in the refinement of mathematical tools 
of control theory applied to the dynamics of cell populations (e.g. [5], [21]). However, 
regarding practical results it has been, with minor exceptions, a failure. The reasons for that 
failure are not always clearly perceived. They stem from the direction of both biomedicine 
and mathematics: important biological processes are ignored and crucial parameters are not 
known, but also the mathematical intricacy of the models is not appreciated. Moreover, 
there exist many limiting factors and “probably the most important - and certainly the most 
frustrating - of these limitating factors is drug resistance” [12, pg. 335]. Cancer cells are 
genetically unstable and combined with fast duplications, mutations and amplifications of 
genes are but two of several mechanisms which allow for quickly developing resistance to 
anti-cancer drugs. Several probabilistic models for developing drug resistance exist in the 
literature (e.g. [3, 7, 9]) where the tumor size is analyzed as a stochastic process and some 
associated probability is maximized, like in [3] the probability to have no resistant cells. 
These models and their predictions can often be tested against clinical data and thus provide 
quantitative information. On the other hand, deterministic models for the evolution of the 
tumor under drug resistance based on the underlying probabilistic effects contribute to a 
qualitative understanding of the phenomenon. A simple model which only distinguished 
sensitive and resistant cells was given in [4]. The broad class of models which describe drug 
resistance due to gene amplification as a dynamic process and not as a single mutation event 
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is represented by probabilistic [6, 7, 9, 10] or infinite-dimensional [11, 25, 27] models 
allowing only limited and sometimes mathematically not rigorous analysis. In this paper we 
formulate more detailed mathematical models for cancer chemotherapy under evolving drug 
resistance which are cell cycle specific and consider various degrees of drug resistance both 
for a single killing agent (section 1) and multiple drugs (section 2) but are finite 
dimensional. While the first model falls into a well researched class of problems 
mathematically, this is not the case for the second model leading also to interesting 
mathematical questions. We initiate an analysis of mathematical models for various cancer 
treatments with tools of modern optimal control in order to provide qualitative insights into 
the structure of optimal protocols some of which might not be so obvious and relatively 
difficult, or at least very expensive to test in a laboratory setting. At the same time 
interesting and important mathematical problems arise which are worthwhile to pursue on 
their own merit. 

2. MATHEMATICAL MODELS FOR CANCER CHEMOTHERAPY  
WITH A SINGLE KILLING AGENT UNDER EVOLVING DRUG RESISTANCE 

We describe two dynamical models of acquired drug resistance for a single killing 
agent based on the mechanism of gene amplification. The models are branching random 
walk type with a finite number of states [9], but averaged over the populations in individual 
compartments. Mathematically these models are described by single-input bilinear systems 
and fall into the class considered by us in earlier research ([14]-[19], [23]-[25]). 

2.1. GENE AMPLIFICATION AND THE DYNAMICS OF DRUG RESISTANCE.  

Amplification of a gene is an increase in the number of copies of that gene present in 
the cell after cell division, deamplification corresponds to a decrease in its number of 
copies. Cancer cells are genetically highly unstable and due to mutational events and gene 
amplification during cell division, cells can acquire genes which as a result make them more 
resistant to certain drugs, for example by addition of genes which aid removal or 
metabolization of the drug. The more copies of such a gene will be present, the more 
resistant the cells become to even higher concentrations of the drug. Gene amplification is 
thus well-documented as one of the main reasons for evolving drug resistance of cancer 
cells (see, for example, [10]). Taking into account an increasing degree of gene 
amplification leads to infinite-dimensional models [11] involving integro-differential 
equations which are difficult to analyze [22, 26, 27]. Thus, assuming some level of 
simplification and staying within a finite dimensional structure may enable a better analysis 
of these problems. Following this idea we present two finite-dimensional mathematical 
models describing developing drug resistance formulated by us which form the basis for 
some of the proposed mathematical investigations. The models are based on a one-copy 
forward gene amplification hypothesis (see [6, 7]), which states that in cell division at least 
one of the two daughter cells will be an exact copy of the mother cell while the second one 
with some positive probability undergoes gene amplifications. 

 IP - 6 



INVITED PAPERS 

2.2. A MODEL WITH TWO LEVELS OF DRUG RESISTANT CELL POPULATIONS.  

As cancer cells obtain increasing numbers of copies of genes which aid removal or 
metabolization of the drug through gene amplification, the more resistant they become to 
increasingly higher concentrations of the drug. It is therefore natural to consider various 
levels of drug resistance in the model and divide the resistant population into compartments 
according to the degree of drug resistance of the cells. Here we formulate the simplest case 
when only two of these levels are distinguished, i.e. overall the model has three 
compartments consisting of drug sensitive, partially resistant and resistant cells. We denote 
the average numbers of cells in these compartments by S, P and R, respectively, and denote 
the inverse of the average transit times through these compartments by a, b and c. In the 
model only transitions between sensitive and partially resistant cells and between partially 
resistant and fully resistant cells are allowed. 

If a sensitive cell undergoes cell division, the mother cell dies and one of the daughters 
will remain sensitive. The other daughter with probability q, 0< q< 1, changes into a 
partially resistant cell. However, for cancer cells (and different from viral infections like 
HIV, for example, see [13]) it is possible that a resistant cell may mutate back into a 
sensitive cell by losing extra gene copies [1, 8]. Therefore, if a partially resistant cell 
divides, again the mother dies and one of the daughters remains partially resistant, but the 
second daughter with probability s, 0< s< 1, undergoes gene amplification and becomes 
resistant or with probability r, 0~ r< 1- s, undergoes gene deamplification and becomes 
sensitive. The case r= 0 when this is excluded is called stable gene amplification while 
unstable gene amplification refers to the phenomenon r> 0. Finally, when a resistant cell 
undergoes cell division, one of the daughters may change back to partially resistant. This 
probability is the same as for partially resistant cells. 

We now consider a cytostatic killing agent. Let u denote the drug dose, 0~ u~ 1, with 
u= 0 corresponding to no drug being used and u= 1 corresponding to a full dose. It is 
assumed that the drug kills a fixed proportion u of the outflow of the sensitive cells at time t, 
aS(t), and therefore only the remaining fraction (1- u)aS(t) of cells undergoes cell division. 
Of these new cells then (2 - q) (1- u)aS(t) remain sensitive, while a fraction q(1- u)aS(t) 
mutates to partially resistant cells. The effectiveness of the drug on partially resistant cells is 
weaker, but not void yet, so we add a coefficient β, 0< β < 1 to represent it. Thus only a 
portion of the outflowing cells from the partially sensitive compartment proportional to βu 
is killed by the drug and the surviving portion (1- βu)bP undergoes cell division with one of 
the daughter cells possibly mutating. Thus, overall the controlled dynamics can be described 
by the following equations: 

     (1) u)rbP, - (1  q)aS - u)(2 - (1  aS- S
*

++=

  (2) rcR,  u)qaS - (1  s)bP -r  - u)(2 - (1  bP- P +++=
*

*

  (3) u)sbP. - (1  r)cR - (2  cR- R ++=
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Here the first terms on the right hand sides account for the deaths of the mother cells, 
the second terms describe the return flows into the compartments and the remaining terms 
give the cross-over flows in the presence of a drug. Note that the effects of the drug show up 
at all return and cross-over flows except for the resistant compartment. 

2.3. INCLUDING PHASE SPECIFICITY.  

We expand the model above to include phase specificity in the sensitive and partially 
resistant compartments. The most commonly used killing agents are G2/M phase specific. 
Therefore within the sensitive and partially sensitive compartments we combine the second 
growth phase G2 and mitosis M into a second sub-compartment and group the remaining 
phases (G0, G1 and S) into a first sub-compartment. We denote the average numbers of 
cancer cells in these compartments by S1, S2, P1 and P2, respectively, and denote the 
corresponding inverse transit times of cells through these compartments by a1, a2, b1 and b2. 
Cells are killed in the second sub-compartments, i.e. all cells leave, but only the surviving 
ones reenter the cell cycle. The dynamics of the resistant compartment is not changed. A 
model which includes a G2/M phase specific killing drug, partial and complete resistance of 
cancer cells to this drug while allowing for reverse or unstable gene amplification can 
therefore be described by 

  (4) ,Sa  Sa-  S        ,Pu)rb - (1  Sq)a - u)(2 - (1  Sa-  S 11222

*

2222111

*
+=++= β

  (5) ,Pb  Pb-  P  rcR,  Su)qa - (1  Ps)b -r  - u)(2 - (1  Pb-  P 112222222111 +=+++= β
**

*

  (6) .Pu)sb - (1  r)cR - (2  cR- R 22β++=

2.4. MATHEMATICAL STRUCTURE OF THE MODELS WITH A SINGLE KILLING AGENT.  

Both models are single-input bilinear systems. If, similarly as it is done in [22] more 
compartments are added to further differentiate the levels of drug resistance, or if blocking 
and/or recruiting agents (without additional killing effects) are modelled as well, then multi-
input bilinear systems of the form arise. 

  (7) 
,N  N(0)    )N,Bu (A  N 0i

m

1i
i

*
=+= ∑

=

We therefore consider a general n-compartment model (7) for cancer chemotherapy as 
an optimal control problem over a fixed therapy interval with dynamics and objective of the 
form 
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   (8) 
∫ →++=
T

0

min u(t)dt   qN(t)  kN(T)  J l

where k, q and l are row-vectors of non-negative weights. The penalty term kN(T) represents 
an average of the total number of cancer cells at the end of an assumed fixed therapy 
interval [0, T], the term qN(t) models cumulative effects of the therapy, and the control term 

 in the Lagrangian measures the negative side effects of the drugs, measured in a 
weighted L1-type norms. Each control takes values in a compact interval in [0,∞). 

)(tul

An obvious state space constraint for these models is that the number of cells remains 
positive. A simple sufficient condition for this to hold is that (M) all the matrices 

, have negative diagonal entries, but non-negative off-diagonal entries 
(i.e are so-called M-matrices.) In cell-cycle specific compartmental models for cancer 
chemotherapy which do not consider drug resistance this condition is always satisfied since 
there are only outflows from the ith compartment, but no direct return flows into the ith 
compartment. The importance of condition (M), however, is more related to the fact that it 
also implies negative invariance of the positive octant under the adjoint flow which 
describes the evolution of the multipliers in the Maximum Principle. For the models 
described above, the system matrices no longer are M-matrices. However, it is not difficult 
to see that states remain positive for all the models introduced above. On the other hand, in 
the analysis of optimal controls it would be of importance to also have a good invariance 
properties of the adjoint flow and these need to be investigated. 

UuBuA i
m

i i ∈+∑ =
,

1

In [24] we already have analyzed necessary conditions for optimality for a general 
dynamics which satisfies condition (M). Since the dynamics and objective are linear in the 
control variables, the prime candidates for optimality are concatenations of bang and 
singular controls. The optimality of possible singular controls needs to be investigated on a 
case-by-case basis and it is intended to perform such an analysis, possibly investigating 
whether there exist common features in these models described above which would allow to 
give a broader criterion. Preliminary computations show that the optimality of singular 
controls depends on the relative portion of resistant cells, but further analysis needed. Aside 
from singular controls, bang-bang controls are the natural candidates and typically there will 
be many trajectories corresponding to bang-bang controls which satisfy the first order 
necessary conditions for optimality, but are not optimal. In [24] we already developed sharp 
necessary and sufficient conditions for optimality of bang-bang controls for a general n-
compartment model which will be applicable. 

3. MATHEMATICAL MODELS FOR CANCER CHEMOTHERAPY WITH MULTIPLE 
KILLING AGENTS UNDER EVOLVING DRUG RESISTANCE 

Over time cancer cells will develop increasing resistance to the killing drug until 
treatment no longer will be effective. It has been noted in clinical experiments that cancer 
cells can lose acquired drug resistance through gene deamplification in the absence of the 
drug [1, 8]. However, drug free sessions allow for unrestricted growth of the tumor. Thus an 
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important therapy strategy is to use combinations of drugs in order to prevent that the cancer 
cells develop too strong a drug resistance to any one of them. Mathematically this leads to a 
structurally quite different model. Here we introduce such a model for the case of two 
killing agents. Due to the drugs’ interactions the dynamics now will be quadratic in the 
controls, but with an indefinite structure, and the corresponding Hamiltonian needs to be 
minimized over a compact control set. These are non-standard, fully nonlinear problems 
which to the best of our knowledge have not been considered before in this form. 

3.1. MODELLING ASPECTS.  

We consider two cytostatic killing agents whose dosages are labelled u1 and u2, both 
with values in the interval [0,1]. (As before, the value 0 represents “no dose” and value 1 
corresponds to a “maximum dose”). The state space now is comprised of four 
compartments, a compartment S of cells sensitive to both drugs, a compartment L1 sensitive 
to drug u1, but resistant to drug u2, a compartment L2 sensitive to drug u2, but resistant to 
drug u1, and a compartment R of cells resistant to both drugs. We denote the average 
numbers of cells in these compartments by the corresponding capital Roman letters. As 
above, it is assumed that the drugs kill a fixed proportion u1 respectively u2 of the outflow of 
the sensitive cells at time t and therefore only the remaining fraction of cells undergoes cell 
division. If we denote the mean inverse transit times through the compartments by a, b1, b2 
and c respectively, then, for example, and exactly as above, only a fraction (1- u1)(2 - s1 - 
r2)b1L1 of cells from L1 reenters L1. Here s1 is the probability that the second of the two 
daughter cells becomes resistant also to the second drug u2, i.e. enters R, and r2 gives the 
probability of gene deamplification to go from L1 into S, i.e. the drug resistance to the 
second drug u2 is removed or lost. As above it is assumed that one of the two daughter cells 
will reenter L1. However, the terms involving cross-over flows with the sensitive 
compartment change considerably simply since the two drugs cannot kill the same cell 
twice. Since the drugs interact with large numbers of cancer cells, it is reasonable to assume 
that the drugs act independently. Other dependency relations can be postulated, but this will 
change the return flows to the sensitive compartment. We limit ourselves to making this 
independence assumption. In this case the return flow is given by (1- u1) (1- u2) (2 - q1 - 
q2)aS and thus becomes quadratic in the controls. In many probabilistic models (e.g. [3]) in 
order to simplify the analysis similar quadratic terms like (1- u1)(1- u2) are linearized with 
the reasoning that the probabilities involved are small. But for this model such an argument 
does not apply and is not needed for the tools we intend to use. Overall the dynamics we 
consider is therefore given as follows: 

   (9)  ,Lb)ru - (1  Lb)ru - (1  )aSq - q - )(2u - )(1u - (1  aS- S 221211212121

*
+++=

  (10) 

 cR,r  aS)qu-)(1u-(1  L)br - s - )(2u-(1LbL 112111211111 +++−=
*
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  (11) 

 cR,r  aS)qu-)(1u-(1  L)br - s - )(2u-(1LbL 222122122222 +++−=
*

*

   (12)  .Lb)su-(1  Lb)su-(1  )cRr - r-(2  cRR 2222111121 +++−=

3.2. THE MODEL AS AN OPTIMAL CONTROL PROBLEM.  

In an optimal control formulation of this problem, we again consider the dynamics 
with an L1-type objective of the form (8). It follows from the necessary conditions of the 
Maximum Principle [20] that amongst other conditions an optimal control ( , ) at every 
time t minimizes the corresponding Hamiltonian function H over the control set U= [0,1] × 
[0,1]. While the precise form of H is messy due to the large number of parameters and 
variables, considered as a function of u1 and u2, qualitatively it has the following structure 

*
1u *

2u

 (t)  (t)u  (t)u  u(t)u  H 2211 21 χψψφ +++=       (13) 

where φ, ψ1, ψ2 and χ all are time-varying functions depending on the states of the system 
and the costates (or multipliers) arising in the formulation of the necessary conditions for 
optimality. For sake of argument, for the moment assume φ(t) is positive. Then we need to 
minimize a function of the form 

 (t)(t)  (t)) - (t))(u2 - (u1  (t)u - (t)u - uu 2121 βααββα +=        (14) 

over U=[0,1] × [0,1]. Different from any kind of standard formulation in optimal control 
problems, this quadratic form is indefinite with a saddle point at (α(t), β(t)) and, as can 
easily be seen, the minimum over the compact and convex set U will always be attained in 
one of the extreme points of U. Furthermore, except for degenerate situations, the point 
where the minimum is attained is unique and in these cases the solution is given by 
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Possible degeneracies arise in any of the five cases when one of these inequalities is 
satisfied with equality. Then the minimum value is taken on along a full face of the control 
set, for example, if α(t) = 0 and β(t) < 0, then the minimum value is 0 and is realized if 
u2 = 0 regardless of the value of u1. This is analogous to the case of singular controls for a 
control linear system and in principle allows the control u1 to become singular (in the sense 
that it takes on values in the interior of the interval) while α vanishes identically on some 
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subinterval. Thus, very much like for the problems described earlier, prime candidates for 
optimality become bang-bang controls which switch between the vertices of U while 
singular controls need to be analyzed. There is an interesting switching behaviour as (α, β) 
crosses the line α = β in the first quadrant while α and β both take values between 0 and 1. 
In such a case the optimal control switches between (0,1) and (1, 0), i.e. both controls 
switch simultaneously. Medically this corresponds to switching treatment from one drug to 
the other without having a rest period in between [2]. 

4. CONCLUSION 

This paper presents the formulation and some preliminary analysis of finite-
dimensional models describing both phase specificity and drug resistance in cancer 
chemotherapy. These models provide for an important application of modern control 
theoretic tools by contributing both to applied aspects of optimal control theory and to 
giving qualitative insights into designing optimal protocols under drug resistance. Although 
a restriction to one drug may be oversimplified for practitioners, these studies will form a 
basis for considering more realistic (but also more complex) models which consider the 
interactions of several drugs. A main challenge in the mathematical analysis of the model 
which describes multi-drug chemotherapy will be to establish the range of values for the 
actual functions φ(t), ψ1(t) and ψ2(t) in (13). This ultimately defines the controls. Here 
again it is expected that invariance properties of the adjoint flow will matter and therefore it 
seems an important issue to develop these properties in greater generality. 

The emergence of resistant clones is a universal problem of chemotherapy. However, 
it seems that its most acute manifestation is the failure to treat metastasis. A part of this 
problem is the imperfect effectiveness of adjuvant chemotherapy as the tool to eradicate 
undetectable micrometastases. In view of toxicity of anticancer drugs, optimal scheduling is 
potentially useful in improving these treatments. 
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