Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Airways remodelling is currently described as a process occurring before asthma becomes clinically manifest, which is confirmed by biopsy studies. The aim of this study was to test and validate image analysis methods to describe the changes such as peripheral airways remodelling in HRCT readings. Different methods of airways extraction from HRCT images were investigated including: manual identification of an airway region major axes on original and scaled images (using different interpolation techniques like pixel resize, bilinear interpolation and cubic convolution), manual extraction of the density profile through the major axes of an airway region, semi-automatic method using active contours and the Hough transform. Methods were tested with original images and artificially modified images by blurring and noise addition (Gaussian, Laplacian and salt-and-pepper). Results suggest that popular image magnification using cubic convolution is not suitable for accurate estimation of shape properties of small regions. Smart pixel resizing enables to delineate a region of inner and outer borders with subpixel accuracy reducing the total error of the wall thickness estimation. Additionally smoothing must be reduced to the minimum in the case of an active contour application.
Rocznik
Tom
Strony
MIP21--30
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Department of Biomedical Engineering, Gdansk University of Technology
autor
- Department of Biomedical Engineering, Gdansk University of Technology
autor
- Department of Allergology, Clinical Hospital No 1, Medical University of Gdansk
autor
- Department of Allergology, Clinical Hospital No 1, Medical University of Gdansk
autor
- Department of Mathematics, University of Gdansk
Bibliografia
- [1] ALVAREZ M. J., OLAGUIBEL J.M., GARCIA B.E., RODRIGUEZ A., TABAR A.I., URBIOLA E. “Airway inflammation in asthma and perennial allergic rhinitis. Relationship with non-specific bronchial responsiveness and maximal airway narrowing” Allergy 2000; 55 (4): 355-362.
- [2] ANNESI-MAESANO I. “Rhinitis and asthma – epidemiological evidence” ACI International 2001; 13 (4): 147-153.
- [3] BEASLEY R., PAGE C., LICHTENSTEIN L. “Airway remodelling in asthma“, Clin Exp All Rev 2002; 2: 109-116.
- [4] LIGIER Y., Osiris software, http://www.expasy.org/www/UIN/html1/projects/osiris/osiris.html.
- [5] LITTLE S.A., SPROULE M.W., Cowan M.D., Macleod K.J., Robertson M., Love J.G., Chalmers G.W., McSharry C.P., THOMSON N.C., “High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity”, Thorax. 2002 Mar;57(3):247-53.
- [6] KASAHARA K., SHIBA K., OZAWA T., OKUDA K., ADACHI M., “Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma”, Thorax. 2002 Mar;57(3):242-6.
- [7] REICHENBACH S., GENG F., “Two-Dimensional Cubic Convolution”, IEEE Transactions on Image Processing, 12(8):857-865, 2003.
- [8] SOBOTTKA K., PITAS I., “Segmentation and Tracking of Faces in Color Images”, Second International Conference on Automatic Face and Gesture Recognition 1996, Killington, Vermont, USA.
- [9] STOCKMAN G., SHAPIRO L.G., “Computer Vision”, Prentice Hall, 2001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0013-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.