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NONPARAMETRIC DESIGN OF IMPULSIVE NOISE REMOVAL  
IN COLOUR IMAGES 

In this paper the problem of nonparametric impulsive noise removal in multichannel images is addressed. 
The proposed filter class is based on the nonparametric estimation of the density probability function in a sliding 
filter window. The obtained results show good noise removal capabilities and excellent structure preserving 
properties of the new impulsive noise removal technique. 

1. INTRODUCTION 

The majority of the nonlinear, multichannel filters are based on the ordering of vectors 
in a sliding filter window. The output of these filters is defined as the lowest ranked vector 
according to a specific vector ordering technique. 

Let the colour images be represented in the commonly used RGB colour space and let 
x1, x2, ..., xN be N samples from the sliding filter window W. Each of the xi is an m-
dimensional multichannel vector, (in our case m = 3). The goal of the vector ordering is to 
arrange the set of N vectors {x1, x2,..., xN} belonging to W using some sorting criterion. 

In [1,2] the ordering based on the cumulative distance function R(xi) has been 
proposed: , where ρ(xi, xj) is a function of the distance between xi and xj. 
The ordering of the scalar quantities according to R(xi) generates the ordered set of vectors. 
The most commonly used measure to quantify distance between two multichannel signals is 

the Minkowski norm
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. The Minkowski metric includes the 
city-block distance (γ = 1), Euclidean distance (γ = 2) and chess-board distance (γ = ∞) as 
the special cases. 

One of the most important noise reduction filter is the vector median. In the case of 
grey scale images, given a set W containing N samples, the median of the set is defined 
as such that Wx ∈)1(
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Median filters exhibit good noise reduction capabilities, (especially when long tailed 

noise is involved) and outperform simple nonadaptive linear filters in preserving signal 
discontinuities. As in many applications the signal is multidimensional, in [4] the Vector 
Median Filter (VMF) was introduced, by generalizing the definition (1) using a suitable 
vector norm. Given a set W of N vectors, the vector median of the set is defined as x(1) W 
satisfying 

 ∑ ∑ ∈∀−<−
j jj ijij Wxxxxxx ,,)1(  (2) 

The orientation difference between two vectors can also be used as their distance 
measure. This so-called vector angle criterion is used by the Vector Directional Filters 
(VDF), to remove vectors with atypical directions, [3]. The Basic Vector Directional Filter 
(BVDF) is a ranked-order, nonlinear filter which parallelizes the VMF operation. However, 
a distance criterion, different from the distance norms used in VMF is used to rank the input 
vectors. The output of the BVDF is that vector from the input set, which minimizes the sum 
of the angles with the other vectors. To improve the efficiency of the directional filters, 
another method called Directional-Distance Filter (DDF) was proposed. This filter retains 
the structure of the BVDF, but uses the combined distance criterions to order the vectors 
inside the processing window, [3,5]. 

2. NONPARAMETRIC ESTIMATION 

Application of statistical pattern recognition techniques requires estimation of the 
probability density function of the data samples. Nonparametric techniques do not assume a 
particular form of density function since the underlying density of real data rarely fits 
common density models. 

Nonparametric Density Estimation is based on placing a kernel function on every 
sample and on the summation of the values of all kernel function values at each point in the 
sample space, [6,7]. The nonparametric approach to estimating multichannel densities can 
be introduced by assuming that the colour space occupied by the multichannel image pixels 
is divided into m-dimensional hypercubes. If hN is the length of an edge of a hypercube, then 
its volume is given by . If we are interested in estimating the number of pixels 
falling in the hypercube of volume VN, then we can define the window function 

m
NN hV =

m,...,1jxifx iji ,2/1,1)( =≤=φ and 0 otherwise, which defines a unit hypercube centered in 
the origin. 

The function )/( Ni hxx −φ is equal to unity if the pixel xi falls within the hypercube VN 

centered at x and is zero otherwise. The number of pixels in the hypercube with the length 

 MIP - 4 



MEDICAL IMAGE PROCESSING 

of edges equal to hN is then )/(
1 N

N

i iN hxxk ∑ =
−= φ and the estimate of the probability that a 

sample x is within the hypercube is pN = kN/NVN, which gives 
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This estimate can be generalized by using a smooth kernel function K in place of )(⋅φ  
and the width parameter hN satisfying:  and 
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The multivariate estimator in the m-dimensional case is defined as 
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with K denoting a multidimensional kernel function mK ,: ℜ→ℜ ndwidths 
for each dimension and N being the number of samples in W. A common approach to build 
multidimensional kernel functions is to use a product kernel ∏=

=
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The shape of the approximated density function depends heavily on the bandwidth 
chosen for the density estimation. Small values of h lead to spiky density estimates showing 
spurious features. On the other hand, too large values of h produce over-smoothed estimates 
that hide structural features. 

If we chose the Gaussian kernel, then the density estimate of the unknown probability 
density function at x is obtained as a sum of kernel functions placed at each sample xi 
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The smoothing parameter h depends on the local density estimate of the sample data. 
The form of the data dependent smoothing parameter is of great importance for the non-
parametric estimator. Choosing the Gaussian kernel function for K, the optimal bandwidth 
is 
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where σ denotes the approximation of the standard deviation of the samples. In one 

dimensional case (7) reduces to the well known, 'rule of thumb', [ ]7,6,ˆ06.1 5
1

* σ
−

= Nh .  
A version which is more robust against outliers in the sample set can be constructed if the 
interquartile range is used as a measure of spread instead of the variance, [6]. This modified 

estimator is σρ ˆ79.0 5
1

* −
= Nh , where ρ is the inter-quartile range. Another robust estimate of 

the optimal bandwidth is σ̂9.0 5
1

* −
= ANh  with )34.1/,ˆmin( ρσ=A . Generally the simplified 

rule of choosing the optimal bandwidth h can be written as 
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where C is an appropriate weighting coefficient. From the maximum likelihood principle 
and assuming independence of the samples, one can write the likelihood of drawing the 
complete dataset as the product of the densities of one sample 
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As this likelihood function has a global maximum for h=0, in [8] a modified approach 
has been proposed 
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This function has one maximum for h, which can be found by setting to 0 the 
derivative of the logarithm of L*(h) with respect to h, which gives 
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A crude but rather fast way to obtain an approximate solution of (11) is by assuming 
that the density estimate of Eq. (5) on a certain location x in the feature space is determined 
by the nearest kernel only, [8]. In this case 
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In this paper we use the optimal h derived from (12) defined as 
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where x˜i represents the nearest neighbour of the sample xi, and C is a tuning parameter. 

3. PROPOSED ALGORITHM 

Let us assume a filtering window W containing N image pixels, {x1,..., xN} and let us 
define the similarity function R→∞);0[:μ  which is non-ascending and convex in [0; ∞) 
and satisfies 0)(,1)0( =∞= μμ . The similarity between two pixels of the same intensity 
should be 1, and the similarity between pixels with minimal and maximal grey scale values 
should be very close to 0. The function μ(xi, xj) defined as , 
where h is the bandwidth of the Gaussian kernel, defined by (8) or (13), satisfies the 
required conditions. 

}]/)[(exp{),( 2hxxxx jiji −−=μ

Let us additionally define the cumulated sum M of similarities between a given pixel 
and all other pixels belonging to window W. For the central pixel x1 we introduce M1 and for 
the neighbours of x1 we define Mk as 

      (14) 
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which means that for xk, which are neighbours of x1, we do not take into account the 
similarity between xk and x1, which is the main idea of this algorithm. The omission of the 
similarity μ(xk, x1) when calculating Mk, privileges the central pixel, as in the calculation of 
M1 we have N − 1 similarities μ(x1,xk), k > 2 and for Mk, k > 1 we have only N − 2 similarity 
values, as the central pixel x1 is excluded from the calculation of Mk, [9,10], (see Figs. 1, 2). 

In the construction of the new filter, the reference pixel x1 in the window W is replaced 
by one of its neighbours if M1 < Mk, k = 2,..., N. If this is the case, then x1 is replaced by that 
xk* for which k* = arg max Mk, k = 2,...,N. In other words x1 is detected as being corrupted if 
M1 < Mk, k = 2,..., N and is replaced by its neighbours xk which maximizes the sum of 
similarities M between all the pixels from W excluding the central pixel. 

The basic assumption is that a new pixel must be taken from the window W, 
(introducing pixels, that do not occur in the image is prohibited like in the VMF). For this 
purpose μ must be convex, which means that in order to find a maximum of the sum of 
similarity functions M it is sufficient to calculate the values of M only in points x1,x2,..., XN. 

The working scheme of the new filter is presented in Fig. 2 for the grey scale case and 
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in Fig. 1 for the two-dimensional data. In the example provided by Fig. 2, the supporting 
window W contains 9 pixels of intensities {15, 24, 33,41,45, 55, 72, 90, 95}, (their special 
arrangement in W is not relevant). Each of the graphs from a) to i) shows the dependence of 
M1 and Mi /1 on the grey scale value, (M/1 < M1), where Mi /1 denotes the cumulative 
similarity value with rejected central pixel x1, on the sample's intensity. Graph a) shows the 
plot of M1 and M/1 for x1 = 15, plot b) for x1 = 24 and so on till plot plot i), which shows the 
graphs of M1 and M/1 for x1 = 95. The central pixel will be replaced in cases: (a), (b), (f) - 
(i), as in those cases there exists a pixel xk for which M1 < Mk. The continuous plots show 
that the extremum of the similarity function M/1 is always obtained at points , which is 
an important feature of this algorithm. Because the function M/1 is convex, the maximum 
can be found by calculating the similarity values in N points only, which makes the 
algorithm computationally attractive. 

Wxk ∈

 

Fig. 1. Impulsive noise removal technique in the 2D case. Fig. a) depicts the arrangement of pixels in W and Fig. b) 
their nonparametric probability density estimation. Figs. c) and d) present the density plots for the cases when the 

central pixels XA and XB are removed from W. It can be seen that in the first case c) the pixel x1 = XA will be retained and 
in the second case d) the pixel x1 = XB will be replaced by XA. The pixel XA will be preserved, as in Fig. c) the plot attains 

its maximum at xC, but this maximum is less than the maximum for XA in Fig. b). Regarding sample XB, its rejection 
causes that the maximum is attained at XA and this pixel will replace the central pixel XB. 

The presented approach can be applied in a straightforward way to multichannel 
images using the similarity function defined as , where || ⋅ || 
denotes the specific vector norm and h denotes the bandwidth. Now in exactly the same way 
we can maximize the total similarity function M for the vector case. 
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4. RESULTS 

The performance of the proposed impulsive noise reduction filters was evaluated using 
the widely used PSNR quality measure. Figure 3a) shows the dependence of the noise 
attenuation capability of the proposed filter class on the bandwidth type  and  defined 
by (8) and (13). Clearly the filter based on the  outperforms the technique based on the h1 
bandwidth for the whole range of used contamination probabilities p, (p = 0.01 - 0.1). 

*
1h *
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Figure 3b) presents the dependence of the PSNR restoration quality measure on the 
kind of the Minkowski norm. Surprisingly, the L∞ norm yields significantly better results 
than the L1 or L2 norms. This is the result of the construction of the h2 bandwidth, which 
depends on the nearest neighbour in the sliding filter window. This behaviour is 
advantageous, as the calculation of the L∞ norm is much faster than the evaluation of 
distances determined by L1, L2 norms. 

The efficiency of the filters based on adaptive  and  bandwidths are dependent, 
(especially for very small noise contamination) on the coefficient C in (8) and (13). Figure 
3c) shows the dependence of PSNR for the filter based on  as a function of C in (13). For 
low noise intensity the parameter C should be significantly larger than for the case of 
images corrupted by heavy noise process. However, setting C to 4 is an acceptable trade-off, 
as can be seen in Fig. 3 d), which depicts the efficiency of the proposed filter in comparison 
with VMF, AMF and BVDF. It can be observed that although the C = 4 is not an optimal 
setting for the whole range of tested noise intensities, nevertheless the described filter yields 
much better results than the traditional techniques. 

*
1h *
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This is also testified by Fig. 4, which compares the filtering results obtained by the 
filter based on adaptive h2 bandwidth with the performance of the reference VMF, BVDF, 
DDF filter. As can be observed the new filtering has much better detail preserving 
properties than VMF, BVDF and DDF. 

5. CONCLUSIONS 

In this paper a new nonparametric technique of impulsive noise removal in 
multichannel images has been proposed. The described filter class is based on the estimation 
of the kernel bandwidth using the technique proposed in [8]. The experiments revealed, that 
the proposed algorithm yields the best results when applying the L∞ norm, which makes the 
filter computationally very attractive. The obtained results show that the proposed technique 
excels significantly over the standard techniques like VMF, BVDF and DDF. 
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