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ARTIFICIAL INTELLIGENCE TECHNIQUE FOR PLANNING DUTIES  
IN HOSPITAL – PRELIMINARY RESULTS  

Scheduling doctors duties in a hospital are complicated and time-consuming tasks. The person 
responsible for creating a duty timetable is facing one major problem when allocating doctors to time periods: 
the agreement between several constraining (and often mutually excluding) requirements must be found. In this 
paper a solution methodology for the monthly duty assignment of doctors is presented. The typical problem is 
described in detail, along with specific hospital environment, from which datasets for experiments have been 
taken. A hybrid approach that utilizes strengths of a few artificial intelligence techniques was used to solve the 
problem. In particular, a population of initial solutions is generated heuristically and then improved using 
evolutionary algorithm. Experimental results are presented along with a discussion on the computational 
efficiency, operational acceptability and quality of the solutions.  

1. INTRODUCTION 

The typical timetabling problem consists in assigning a set of activities/actions  
(e.g. work shifts, duties, classes) to a set of resources (e.g. physicians, teachers, rooms) and 
time periods, fulfilling a set of constraints of various types. Constraints stem from both 
nature of timetabling problems (e.g. two events using the same resources cannot be planned 
at the same time) and specificity of the institution involved. In other words, timetabling  
(or planning) is a process of putting in a sequence or partial order a set of events to satisfy 
temporal and resource constraints required to achieve a certain goal, and is sometimes 
confused with scheduling, which is the process of assigning events to resources over time to 
fulfil certain performance constraints (however, many scientists consider scheduling as  
a special case of timetabling and vice versa) [17]. 

Timetable problems are subject to many constraints that are usually divided into two 
categories: “hard” and “soft”. Hard constraints are rigidly enforced and have to be satisfied 
in order the timetable to be feasible, for example no resource can be demanded to be in 
more than one place at any one time. Soft constraints are those that are desirable but not 
absolutely essential (e.g. an event may need to be scheduled in a particular time period or 
one event may need to be scheduled before/after the other). In real-world situations it is 
usually impossible to satisfy all soft constraints (often because they are mutually excluding.  
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Timetabling problems arouse interest of many researchers. Although most commonly 
educational timetabling (e.g. university course or examination timetabling) and job-shop 
type problems are dealt with, the planning and scheduling in the medical hospital 
environment are also quite popular to be seen about. Recent research concerns medical 
therapy planning, operation theatres scheduling, drug logistics and personnel (particularly 
nurses and physicians) shift allocation [4] [9] [12] [18] [19]. Artificial Intelligence (AI) 
research community is quite active in the area of timetabling and scheduling and has 
developed a variety of approaches for solving such problems. They can be roughly divided 
into four types [3]: 

• sequential methods – these methods order events using domain heuristics and then 
assign the events sequentially into valid time periods (also called timeslots) so that no 
events in the period are in conflict with each other; events are most often ordered in 
such way that events that are most difficult to schedule are assigned into timeslots 
first (this course of action is called direct heuristic based on successive 
augmentation) [2]; 

• cluster methods – in this methods events are collected in clusters where any two 
events in a particular cluster do not conflict with each other; the main drawback of 
these approaches is that the clusters of events are formed and fixed at the beginning 
of the algorithm and that may result in a poor quality timetable [14]; 

• constraint-based approaches – in these methods a timetabling problem is modelled as 
a set of variables (i.e., events) that have a finite domain to which values (i.e., 
resources such as time periods) have to be assigned to satisfy a number of 
constraints; a number of rules is defined for assigning resources to events and when 
no rule is applicable to the current partial solution a backtracking is performed until a 
solution is found that satisfies all constraints; as the satisfaction of all constraints may 
not be possible, algorithms are generally allowed to break some constraints in a 
controlled manner in order to produce a complete timetable [8][20]; 

• meta-heuristic methods – variety of meta-heuristic approaches such as simulated 
annealing, tabu search, evolutionary algorithms and hybrid approaches have been 
investigated for timetabling; meta-heuristic methods begin with one or more initial 
solutions and employ search strategies to find optimal solution, trying to avoid local 
optima in the process [5][6][14][15][17][19]. 

Recently the application of case-based reasoning to timetabling has become 
increasingly popular [1] [10] [11].Most approaches use heuristics because traditional 
combinatorial optimization methods often have a considerable computational cost. Although 
they can produce high quality solutions, they are not suitable for solving large, highly 
constrained problems. It is believed that AI medical planning is at a quite mature level and it 
is expected will soon be applied to practical systems.  

This paper presents a solution to a duties planning problem in polish hospital. In 
chapter 2 the problem is described in detail along with constraints connected with it. 
Chapter 3 contains proposed framework’s description. Results of experiments with this 
approach are presented in fourth chapter. Last chapter contains summary and points to 
direction of future work. 
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2. THE PROBLEM 

A typical hospital department employs about a dozen or so physicians of various 
specialties. On each day one or more doctors has a duty. Number of doctors on duty may 
vary from day to day. A planning horizon (i.e. a period of time for which the problem must 
be solved) amounts one month. If specialties of physicians in particular department are not 
homogenous (e.g. casualty ward employs surgeons and anaesthesiologists) there are often 
requirements for specialty of doctors on duty. The following hard constraints are defined: 

• all the timeslots (i.e. days) have a proper number of physicians of appropriate 
specialties assigned; 

• no physician has a duty in two (or more) consecutive days; 
• no physician has more than two duties in the week; 
• at least one physician on each duty is able to perform duties single-handed (that 

means that particular doctor has a certain degree of medical education and is 
experienced and responsible enough). 

In order to consider and model fairness and job satisfaction issues, the following soft 
constraints are introduced: 

• all the physicians have more or less the same number of duties assigned; 
• weekends are fairly distributed among the physicians – duties on weekends are 

most often paid better than on other days; on the other hand most people like to 
have free weekends; as the matter of fact the same issue concerns Thursdays 
(because after Thursday’s duty Friday is free) and Fridays (because duty on Friday 
means spoiled Saturday); 

• physicians have duties on preferred days of the month and, symmetrically, they 
have no duties assigned in timeslots they don’t want to have duties; 

• if more than one physician has a duty assigned in particular time period social 
preferences are taken into consideration (doctors have duties with persons they 
like). 

Duties on special days, like Eastern, Christmas, New Year’s Eve, etc. are preassigned, 
according to schedules from previous years so no one has duty on the same holiday two 
years in a row.  

3. AUTOMATIC PLANNING METHOD 

Approach described in this chapter is based on evolutionary algorithm (EA) 
framework, which turns out to be useful as a general-purpose optimization tool, due to its 
high flexibility accompanied by conceptual simplicity. Unfortunately, ‘classic’ EA are not 
appropriate tool for solving constrains satisfaction problems (CSP), like the one described in 
previous chapter. It stems from many factors. EA evaluation function in case of CSP is 
often penalty-based, and slight changes (like mutation) in particular genotype result in small 
changes in evaluation function, so the selective pressure is rather weak. Also, changes may 
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cause not only improvement, but also deterioration of the solution in terms of the 
evaluation. Forcing bigger changes (by introducing macromutation or altering the form of 
evaluation function) is not very effective, because it shakes the whole evolution process. 
Enlargement of population size may work as a remedy for weak selective pressure but it 
comes with extended computational cost. All these factors support modification or even 
elimination of “classic” genetic roulette, leaving population-based representation of 
solutions and genetic operators form EA framework. Penalty-based evaluation function in 
such cases becomes a tool not only evaluating solutions but also directing the genetic 
operators [16]. 

Each physician has the following data assigned: 
• social preferences – for each other physician one of five possible social preferences 

is defined (in order from most to least desirable): “absolutely”, “yes”, “no matter”, 
“no” and “no way”, where “absolutely” means that physician wants to have duties 
only with that partner and “no way” means that physician doesn’t want to have 
duties with that partner at any circumstances; the social preferences are symmetric 
(if doctor a has particular preference for doctor b, doctor b must have the same 
preference for doctor a); 

• time preferences – for each day of the month that plan is made for one of five 
possible time preferences is defined (as described above); 

• independence flag – shows if a physician can perform duties single-handed; 
• if some (or possibly all) duties need heterogeneous staff (doctors of different 

specialties) to be assigned, physician’s specialty is kept. 
 
For each day of the month desired number of physicians on duty, along with their 

specialties (if applicable) is defined. The most and the least desirable time and social 
preferences are considered hard constraints (so they must be satisfied in order the timetable 
to be feasible) and the others are soft. The dataset is verified for consistency before 
timetabling process starts to avoid situations where e.g. no one wants to have duty together 
with particular person, on particular day or at least one physician in a pair which is bound 
together with “absolutely” preference is able to perform duties single-handed.  

Specimen (genotype) is represented directly – each time period (day) is represented by 
list of doctors who have a duty assigned on that day. Genotype length is constant for 
particular timetable (e.g. if duties are planned for May and every day there are two 
physicians on duty, genotype has a length of 62).  

As it was shown in [7] and [16] genotype initialization strategies which produce 
feasible timetables give better effects than random or non-feasible ones. This is 
understandable – it’s much easier to optimize function of soft constraints than to seek 
feasible solution first and then optimize it (or seek and optimize simultaneously). Hence the 
heuristic genotype initialization procedure has been worked out. First, an “empty” genotype 
(without any doctors assigned) is generated. Then the physicians with the strongest time 
preferences (“absolutely”) are assigned appropriate timeslots, along with their “absolutely” 
preferred partners. The remaining free duties are assigned random physicians in such way 
that no physician has two duties in a row, no hard time or social preferences are violated and 
physicians have appropriate specialties (if applicable). The probability of assigning duty to a 
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doctor is proportional to the strength of his preferences concerning particular day and/or 
partners, so doctors with more positive preferences are more probable to be chosen than 
those with neutral or negative ones. This procedure does not take into consideration hard 
constraint concerning having more than two duties in a week.  

It has to be emphasized that the procedure described above does not guarantee 
producing a solution. If no physicians to assign a particular duty without breaking some 
hard constraints can be found, backtracking is performed. A random number of randomly 
chosen duties are cleaned of any assigned doctors and the day before the time when 
procedure failed to find any appropriate physician is cleaned completely (unless strong time 
preferences are involved). However, in the experiments conducted on real data there was no 
need to use this backtracking method. 

Penalty-based evaluation function was used. Penalty for genotype g amounts  
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where d is the number of days in the month which timetable is being made for, pdi is the 
number of duties on day i, spr is a penalty/reward for a physician on duty j having 
negative/positive preference for all other physicians in day i, tpr is a penalty/reward 
connected with time preferences (as above), wp is a penalty for physician having more than 
two duties in a week (this penalty is not in effect, if physician has “absolutely” time 
preference for day i; in this case penalty is imposed on previous or next doctor’s duty on 
particular week) and dp is distribution penalty (applicable only to Thursdays, Fridays and 
weekends – this penalty is imposed if doctor has more or less duties than average on 
particular day of the week; this penalty grows exponentially – for each duty more/less than 
average penalty is to times greater).  

Value of the evaluation function for solution g is calculated by dividing the lowest 
penalty value in the population by penalty value for g. 

 
g
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After generating the initial population the evolutionary algorithm begins to operate. 
Creation of population in subsequent generations (iterations) is archived by means of 
classical genetic roulette, as described in [13], but 20% of the population is always 
preserved from previous generation. 10% consists of best solutions (in terms of evaluation 
function described above). The remaining 10% are the solutions that are most distant from 
the rest of the population, in order to preserve population diversity. The distance between 
two timetables is measured in pairs of physicians that have been assigned duty on the same 
day in both timetables, as described in [3]. The higher is the score, the smaller is the 
distance between timetables. This method is favoured because it allows to represent 
diversity as a single value average and did not have the drawback of method where absolute 
positions of the events in timetables are considered (physicians that have duties on the same 
day in both timetables are counted).  

 KB - 87



KNOWLEDGE BASES AND AUTOMATIC CONCLUSIONS 

Once every iteration of the algorithm a mutation operator is applied to each solution. 
The operator changes physician assigned a particular duty to another one in such way that 
all hard constraints remain satisfied. The duty to mutate is chosen at random but the higher 
the penalty imposed on duty, the higher the probability this duty is chosen. Computation 
ends after a set number of iterations or if there is no improvement in the evaluation function 
of the best solution in three subsequent generations. If penalty imposed on any solution 
reaches 0 or less that solution is saved and removed from the population. 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

The approach described above has been implemented using Microsoft Visual C++ 7.0, 
and the experiments have been conducted on Athlon 2100+ class machine with 512 MB of 
RAM.  The population of 500 solutions have been used. The following values of penalties 
and rewards have been assumed:  

• penalty for negative time or social preference – 10 ; 
• reward for positive time or social preference – -5; 
• penalty for having more than two duties in a week – 15; 
• base of distribution penalty – 15 (so if doctor has 1 duty more or less than doctors 

have on average the penalty is 15; if 2 more/less – 30, 3 – 60 and so on).  
 
The experiments were conducted on nine datasets. First was a real dataset from 

Department of Neurosurgery of University of Medicine in Wroclaw and contained data on 
10 neurosurgeons (3 of them can’t work alone). No time preferences and only two social 
preferences have been defined (as “no”). There were two doctors on duty on odd days of the 
month and one doctor on even ones. The rest of datasets was created artificially, adding two 
random social preferences for each doctor and 5 random time preferences to the dataset with 
real data (datasets 2-5) or five random social preferences and 10 random time preferences 
for each doctor in real dataset (datasets 6-9).  

The results are presented in table 1. The numbers presented in the table are average of 
ten measurements. Second column show number of iterations after first solution with 0 or 
less penalty has been found. The third column holds average penalty of the entire population 
after finishing the computation and the fourth column contains average distance between 
solutions with 0 or less penalty after finishing the computation. Number of 0 or less penalty 
solution after algorithm stopped is in the last column. 
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Table 1. Experimental results 

Dataset Average 
iterations Average penalty Average distance 0 or less solutions

1 (real data) 160 47.8 7.6 63 
2 217 69.3 9.2 31 
3 267 77.1 4.1 53 
4 232 43.2 4.3 56 
5 199 81.8 9.2 23 
6 631 95.3 12.2 9 
7 939 57.3 3.8 33 
8 715 73.4 4.4 21 
9 688 104.2 11 11 

 
The problems solved were rather simple so the algorithm was able to find solutions 

with 0 or less penalty quite fast. However, it has to be emphasized that less constrained 
problem often means larger search space and to determine what part of search space has 
been visited further study is required. Final operational acceptability and subjective quality 
of the solutions with 0 or less penalty had to be determined by human. Only results from the 
real dataset were taken into consideration, because it was hard to determine quality of the 
solutions produced for artificially altered datasets. The overall quality of the solutions has 
been considered good and the system is ready to operate in real hospital environment. 
Average algorithm run time was about fifteen minutes, so computational efficiency of the 
method is acceptable. The scalability of the approach is yet to be determined in future 
research. 

5. CONCLUSIONS AND FUTURE WORK 

The automatic duty scheduling system described above is currently being introduced 
in real hospital environment. The results are quite appealing and the method used shows 
good promise for the future. Although it has been implemented and tested for one particular 
problem variation, the framework used is universal and can be used to solve other similar 
problems. Future work should concentrate on testing some functions to measure distance 
between solutions other than described in the paper. That should allow finding a way to 
improve diversity of final population and coverage of the search space. Using other 
functions than presented (e.g. Fibonacci sequence) in evaluating distribution penalty also 
seem interesting along with adding more sophisticated genetic operators that use some form 
of local search. Finally, more test data sets have to be obtained in order to prove generality 
of the method.  
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