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To-date research in the area of applied medical artificial intelligence systems suggests that it is necessary 
to focus further on the characteristic requirements of this research field. One of those requirements is related to 
the need for effective analysis of multidimensional heterogeneous data sets, which poses particular difficulties 
when considering AI-suggested solutions. Recent works point to the possibility of extending the activation 
function of a perception to the time domain, thus significantly enhancing the capabilities of neural networks. 
This change results in the ability to dynamically tune the size of the decision space under consideration, which 
stems from continuous adaptation of the interneuron connection architecture to the data being classified. Such 
adaptation reflects the importance of individual decision attributes for the patterns being classified, as defined by 
the Sigma-if network during its training phase. These characteristics enable effective employment of such 
networks in solving classification problems, which emerge in medical sciences. The described approach is also a 
novel, interesting area of neural network research. This article discusses selected aspects of construction as well 
as training of Sigma-if networks, based on a sample problem of classifying Arabic numeral images. 

1. INTRODUCTION 

The development of medical advisory systems has always been linked to broadening 
the means of patient data acquisition, as well as creating new ways of processing and 
utilizing such data. The rapid abandonment of formal methods in favour of heuristic data 
analysis enabled developers to widen the scope of data subject to processing and to narrow 
the gap between artificial diagnostic systems and medical practitioners [19, 32, 33]. The 
recent years in particular have been a period of unprecedented advancements in data 
acquisition and processing techniques; yet the ever greater demands placed on medical 
advisory systems necessitate inventing new methods of data processing, aimed specifically 
at medical uses. 

The specificity of medical data results from numerous factors, including, but not 
limited to, completeness, consistency and accuracy criteria. Of importance are also 
geographical and cultural aspects; however the greatest problem facing developers of 
medical information systems is the considerable heterogeneity of medical data, and the 
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associated difficulties in determining the relevancy of individual information classes - or 
even individual records. [7] 

Considering the heterogeneity of medical data (such as X-ray and EMR images, ECG 
and EEG readouts, information on age, weight and size of the patient as well as on his/her 
family and environment), it is often difficult to judge which factors play a key role in 
diagnosing specific diseases and conditions. Most existing approaches to automatic 
reasoning using artificially-limited search spaces often lead to classification errors resulting 
from the lack of completeness in patient data files. This drawback calls into question the 
application of computerized systems for automatic diagnostics and treatment. Alternative 
solutions, which involve presenting the system with a full dossier of patient data, frequently 
introduce high levels of unwanted noise and redundant information [15]. 

Similar difficulties emerge even when processing minute fragments of patient data. A 
good example here is medical image processing. Such images often contain a large amount 
of noise interspersed with valuable information. Automated image analysis is typically 
linked to the application of neural networks, albeit with no clear set of reasoning guidelines 
or attributes on which such analysis relies [3, 32]. The conclusions presented below suggest, 
however, that it is in fact possible to modify typical neural networks, trained with the use of 
back propagation algorithms, in a way which would allow us to assess the importance of 
individual attributes affecting classification. This enables subsequent verification of 
conclusions derived by the system without the need to resort to additional tools for 
extracting knowledge from neural networks [10, 16]. 

2. THE SIGMA-IF NEURAL NETWORK 

The basic constituent of a traditional neural network is the perceptron, which processes 
incoming signals from interneuronal connections by means of two functions:  the activation 
function A and the output function F. The former determines the activation level of the 
neuron, while the latter formulates an answer which is then communicated to other areas of 
the network. The importance of the output function as well as of weights attached to 
individual connections has been thoroughly analyzed in numerous publications 
[1, 4, 8, 10, 11, 25]. It is worth noting, however, that the activation function is almost 
always assumed to be a linear combination of input values, which is not supported by 
theory. Analyzing the behaviour of neurons with various activation functions can therefore 
lead to new processing structures, with novel, useful characteristics [2, 6, 16, 22, 23]. 

The Sigma-if neuron (fulfilling the above criteria) has its dendrites divided into K 
classes, which implies associating a special parameter θ with each network connection, 
describing its class participation. All these parameters together form the class vector Θ. The 
number of different classes of input connections K is set by network learning method and is 
limited to a selected value M. 

This construct can be clearly interpreted from a biological standpoint: in the case of 
real neurons, individual dendrites differ in length, which means that data transport is neither 
instantaneous nor correlated within any particular connection. This phenomenon forms one 
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of the characteristics which allow a real neural network to associate incoming signals with 
particular connections and processing areas. Hence, the classes of input connections of an 
artificial neuron acquire a representation of length, or – more intuitively – the transfer time 
for signals through interneuronal connections. In light of this fact, Θ will hereafter be called 
the delay vector, and its individual values will be treated as delays introduced by particular 
connections. 

We can thus alter the characteristics of determining the activation of a neuron – from 
instantaneous to time-driven. Just as in the case of a classical perceptron, this process entails 
the accumulation of input signals, multiplied by individual components of the weight vector 
w. However, in our case, the accumulation consists of distinct stages. The activation of the 
neuron, net, is increased in a stepwise fashion by sums of incoming signals (in the order 
determined by their respective delays). This process continues until the net exceeds the 
neuron’s activation threshold net* - subsequently, the output value is determined and all late 
signals (ones which still haven’t arrived) are disregarded. If the activation threshold is not 
achieved even after all input signals are integrated, the output remains zero. 

We can easily surmise that class k of dendrites contributes a value of Δk to the 
activation of the neuron, where: 
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Given Δk, the behaviour of the neuron can be described by deriving a recursive 
expression of the following form: 
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where: 
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net* is a constant and H is Heaviside’s function. The activation of a processing unit of type 
Sigma-if (conditional sum) is then expressed as: 
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while its output value y is equal to: 

 )),(( xwAFy = . (6) 

The described mechanism, given the right distribution of delays and weights, allows 
the discretization of the data space into a number of input parameters, dynamically adjusted 
to the type of patterns emerging at the input of the network. Individual neurons may attempt 
to undertake a decision for a set input value K times, initially dissecting the data space by 
hypersurfaces with a small number of dimensions, then – if the need arises – increasing their 
complexity. The grouping of dendrites into classes, suitable for a particular task, allows us 
to eliminate parameters which are either insignificant or detrimental to the final result. 
Decreasing the number of dimensions of the search space makes it easier for the network to 
classify data while preserving the original number of constitutent neurons (i.e. the 
hypersurfaces dissecting the data space). In a special case all dendrites belong to the same 
delay class, the Sigma-if network is equivalent to a perceptron network. 

Another possible interpretation relates the described technique to dynamic neural 
network pruning [16]. The approach is, however, a highly specific method of minimizing 
network size, in that no connections or neurons are actually removed from the network 
[compare: 23, 28]. Given the right distribution of delays, connections are used only when 
they prove necessary for the system to reach a decision. In spite of the synchronous mode of 
operation, the network is actually asynchronous in nature. At the same time it becomes far 
easier to train and operate. 

What is even more interesting; the activation threshold of the output function does not 
impose any limits on network operation and does not introduce artificial conditions 
involving individual input parameters. This is most likely due to the fact that regardless of 
the input values, for a given distribution of delays the BP algorithm can select suitable 
weights to ensure optimal network operation [21, 24]. 

3. DELAY VECTOR SELECTION 

All the above mentioned characteristics of the Sigma-if network are strictly dependent 
on proper selection of values for individual elements of the delay vector, adjusted to the 
problem being considered by the network. Hence, a special variant of the back propagation 
algorithm has been developed, allowing for the selection of individual delay times during 
the training phase. This variant is analogous to the simulated annealing algorithm with two 
guiding parameters, where the particles are represented by interneuronal connections. 
Energy is equivalent to the neural network error function (its gradient governs the annealing 
process), while the guiding parameter set is composed of connection weights and introduced 
delays [16]. 

The BP algorithm only adjusts the weights of those dendrites (active connections), 
which, in the preceding pass of the training process, contributed to the activation of their 
respective neurons and compounded the overall network error. To some degree, this 
procedure can counteract the destruction of weights when the network is presented with 
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different classes of training patterns than the current one. Given the right distribution of 
delays, each class can be recognized using different input parameters. In order to come up 
with the proper delays, it is necessary to adequately modify the active connections during 
each pass of the BP algorithm: 

• increasing and decreasing them for active connections which contribute (within their 
respective classes) to neuronal activation to the smallest and greatest degree 
respectively, when the overall network error decreases. 

• decreasing them for inactive connections in the current pass of the BP algorithm, 
when the overall network error decreases too slowly or increases. 

In this way, the training algorithm attempts to establish – for each neuron – the proper 
number of classes and their associations with particular connections. This procedure is 
beneficial, because one of the reasons why BP algorithms may prove unable to minimize 
error is the lack of access to some input parameter (when the connection delay is too great). 
In such a situation, we should extend the class of active connections with selected inactive 
connections, in search for the missing element necessary for further minimization of 
network error. On the other hand, if the minimization progresses well, we can try to 
eliminate from the decision process those connections which do not significantly affect 
neuronal activation (by moving them to less important classes) as well as whole classes, by 
moving highly active dendrites to classes with more significance. 

4. EXPERIMENTS CONDUCTED 

The operation and properties of the described approach will be presented on the basis 
of comparing its results with those of a classical neural network for a sample categorization 
of arabic numeral images. The sample networks constituted of 49 entries and 10 binary 
output nodes. Each entry corresponded to one pixel of the analyzed image, while the output 
nodes were associated with subsequent numbers (0 to 9). There was one hidden layer, fully 
connected to both the input and output layers. The classical network was trained using the 
back propagation algorithm with no momentum. As a baseline, changes of delays in the 
Sigma-if network occurred between the hidden layer and the input layer only. During 
training, sample numeral images from Fig.1 were used.  

 

Fig. 1. Sample training data for neural networks. 

The training times t, expressed in the number of epochs, show that the Sigma-if 
network takes more than 2 times longer to train (2.2 times to be exact) than its classical 
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counterpart [16]. This results from the correlation between the pace of changes in network 
error E and the average neuronal activation. For the Sigma-if network, the decreased 
number d* of binary connections participating in training results in neuronal activations 
being proportionally smaller. In order to enable the reception of similar output signals in 
such circumstances, it is necessary to increase the weights of active connections. 
Considering the constant nature of each training step, this must be “paid for” by additional 
training epochs, as expressed by the following empirical dependencies (n – neuron number; 
M – number of its inputs):  
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The observed growth in time t* of Sigma-if network training as compared with time t 
for its classical counterpart matches the calculated average number of active connections per 
hidden layer neuron (17.4), which, given 100 connections in the input layer and no more 
than 490 connections in the hidden layer, results in a decrease of the total number of active 
dendrites compared with a full network of connections, by a factor of 2.15 
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The extended training time is, however, offset by improving other characteristics of 
the network. If we analyze the system’s capability for generalization, i.e. the ratio of correct 
answers for noisy data measured against the amount of noise, we find that the Sigma-if 
network performs better by 7.6% (on average).  

Increased resistance to noise is a simple consequence of decreasing the number of 
input parameters considered by the proposed network during the decision process, as well as 
of uniform distribution of errors throughout the full spectrum of attributes. By limiting input 
perception to selected parameters, the network “overlooks” noise in all other attributes, thus 
achieving better focus on signal data.  

Decreasing the number of decision attributes, however, introduces drawbacks as well. 
If one or more of the selected attributes is noised, the Sigma-if network proves more error-
prone than its classical counterpart. This translates into an increased amount of incorrect 
answers (by 13% on average). We should note the near-elimination of cases in which the 
network makes no decision at all. Its behaviour is far more categorical than that of the 
classical network, due to the simplified decision space. 
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Aside of the possibility of utilizing the described conditional activation function for 
nondestructive neural network minimization, it has one more interesting area of use. Thanks 
to the ability to interpret classes of dendrites as determinants of their usefulness in the 
decision process, it is possible to incorporate the Sigma-if network in the process of 
deriving knowledge from data. By treating the contents of the previously presented set of 
numeral images as training data, we can also determine the relevancy of individual 
attributes and select a subset which is sufficient for classification. This reduction in the 
search space area can simplify subsequent phases of KDD. 

5. SUMMARY 

Wrapping up the presentation of conditional activation and the Sigma-if network 
which bases on it, we should once more recall its most important characteristics. Compared 
to classical neural networks, the Sigma-if approach is characterised by greater generalisation 
capabilities, albeit it also commits more errors. Owing to the lesser number of utilized 
interneuronal connections, the training time increases in inverse proportionality to this 
decrease. This, however, has a positive effect in that the resultant system operates some 
10% faster (the actual gain is somewhat greater, but it is partially offset by the overhead 
introduced by additional processing structures). 

Even more importantly, the presented modification of standard neural networks points 
to an interesting new area of research on methods of extracting knowledge from databases 
[20,26,27,31]. It attempts to unify the versatility and flexibility of neuronal classification 
with the clarity and transparency of rule-based reasoning systems [2, 9, 13, 30]. Combined 
with the possibility of selecting classification-relevant elements of heterogeneous data, these 
properties may constitute the first step towards creating methods of data analysis uniquely 
suited to medical uses (the image processing methods presented in the article may well be 
extended to other types of data) [16,18,27].  
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