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EVOLUTIONARY APPROACH TO RULE EXTRACTION  
FROM MEDICAL DATA 

In the paper the method called CGA based on a cooperating genetic algorithm is presented. The CGA is 
developed for searching a set of rules describing classes in classification problems on the basis of training 
examples. The details of the method, such as a schema of coding (a chromosome), and a fitness function are 
shortly described. The method is independent of the type of attributes and it allows choosing different evaluation 
functions. Developed method was tested using different benchmark data sets. Next, in order to evaluate the 
efficiency of CGA, it was tested using the Breast Cancer data set with 10 fold cross validation technique. 

1. INTRODUCTION 

Nowadays people dispose terabytes of collected data. Existing databases are 
potentially large sources of useful knowledge, but - to be useful - this concealed knowledge 
must first be drawn out from databases in the form comprehensible for people. This process 
is called data mining. One of its tasks is classification. Let us assume that we have a set of m 
objects represented by a vector xi =[xi,1, xi,2 ,.., xi,k], where: i=1 ,.., m. Classification can be 
defined as a splitting the objects into mutually disjoined v categories. In some domains it is 
required to acquire rules specifying the principles of classification. Such rules can be very 
useful in medicine. 

Many medical problems can be represented as tasks of searching large spaces:  
a pathologist must search the space of all possible cell features to make a diagnosis,  
a radiologist must search a whole space of possible therapies to plan a sequence of 
radiotherapy, etc. Usually, search spaces are very large and the tasks are difficult. The 
useful techniques are, among others, evolutionary algorithms (classification problems, rule 
discovery, planning, etc, e.g. [5-6, 9-10]). Extended bibliography concerning EA in 
medicine one can find in [7-8]. 

The formal form of a classification rule is presented by: 

IF prem1 and prem2 and ... and premk THEN classb 
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Each premise premi imposes a constraint on the single input variable: for variables 
with real values premise defines a range [ai ;bi], for enumerate – it assigns a specific values. 
A rule is activated when considered example satisfies requirements coded in the premises. 
The paper presents developed method of rule discovery from data, called CGA 
(Cooperating Genetic Algorithm). In the following sections the details of this method are 
described. The results of experiments studying its efficiency are also presented and 
discussed. 

2. THE CGA METHOD 

2.1. PROBLEM DEFINITION 

The rule extraction problem can be treated as a task of searching for the set of 
classification rules on the basis of training examples in order to find rules that in the best 
way represent the dependency hidden in the explored data. This problem can be seen as an 
optimization problem. If we take into account the existence of different type of attributes 
(enumerative, binary, continuous and discrete) in one training set, the need to find rules 
describing different classes, and the huge dependencies between attributes, we obtain the 
task, which is similar to NP problem. The above observations lead to the result that 
evolutionary method can be useful in this task. The idea is not new [3]. Unfortunately, the 
level of complexity of this problem prevents the application of a simple genetic algorithm 
(GA), so existing methods applying a genetic algorithm differ in the way of coding and 
obtaining the final set of rules [3-4]. 

2.2. THE IDEA  

To find the set of rules describing classification is a multimodal problem. A genetic 
algorithm usually tends to the global optimum. It means that a GA, working with a single 
rule encoded in one chromosome, assures one the best rule, which characterizes one class. 
To obtain rules for different classes we implemented as many subpopulations as many 
classes exist in the given problem (Fig. 1). It means that the label of subpopulation denotes 
the class. In this case, there is no need to encode the conclusion representing class in the 
chromosome. The problem of searching the set of rules in one subpopulation still exists, 
because it is very rarely possible that by one rule we could describe all examples in one 
class. This problem is solved by implementation the niching method.  

In our method, the description of each subpopulation is based on hierarchical GA, the 
first one works in Level1 – it is responsible for selection of active attributes for the rule 
construction. The second one, working in Level2 searches for the boundaries of ranges for 
real valued attributes and values for other attributes (with binary or enumerative value). The 
algorithm (for each subpopulation) goes as follow (Fig.2): 
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1. Random generation of initial population in the Level1  
{binary chromosomes contain n flags for attributes, n – the number of attributes, one in an individual indicates 
an active premise (active attribute) in the evolved rule} 

2. For each individual in the population perform evolution (v generations) in the Level2 
{chromosomes in Level2 contain a boundaries for real valued attributes and values for attributes with binary or 
enumerate values} 

3. Evaluate individuals in the Level1 taking into account an effect of evolution in Level2 
4. Check the stop conditions, if not: 
5. Select individuals to the reproduction 
6. Perform mutation and crossover and go to the 2. 

For each individual from the population in Level1 evolution in the Level2 searches for 
the best values of active attributes in the premises of the evolved rule. Evolution in this level 
operates as follow: 
1. Create initial chromosomes (individuals) {take into account allowed values for particular attributes, Fig. 3} 
2. Evaluate each individual  

• Decode a chromosome into a rule according to flags in the relevant individual in Level1 
• Evaluate obtained rule taking into account examples belonging to the ascribed class and defined fitness function 

(see next sections) 
3. Check for stop conditions, if not: 
4. Select individuals for reproduction 
5. Perform mutation and crossover, the operators depend on the type of modified attribute and go to the 2. 
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Fig. 3. The scheme of cooperating genetic algorithms in CGA 
method searching for rules for one class 

Fig. 1. An example population with 3 
subpopulations for 3 classes 

Fig. 2. The scheme of a chromosome  
in the Level2  of CGA method 

2.3. THE FORM OF CHROMOSOMES AND GENETIC OPERATORS 

In developed CGA we use different chromosomes and genetic operators in both levels. 
Chromosomes in Level1 consist of n binary values (n is the number of premises in the rule, 
simultaneously it is a number of attributes in examples). The standard genetic operators are 
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used in Level1. The roulette wheel selection is realized taking into account evaluation of 
individuals. 

In Level2 an individual consists of the two parts. The first one concerns real valued 
attributes. For each attribute in this case, a chromosome contains a pair of real values – the 
boundaries of its range. The second part of chromosomes contains values for all other 
attributes (i.e., enumerative ones). So we can say, that we consider two types of genes: 
continuous and enumerate (Fig. 2). Mutation process differs for the first and the second 
parts of chromosomes. Mutation of boundaries of ranges works as in evolutionary strategies. 
Values of x after mutation are calculated according to the equation (1):  

 ),0()()1( δNtxtx +=+  (1) 

where ),0( δN  is a Gaussian number, deviation δ  usually evolves as a part of chromosomes. 
Such mutation is very natural because the small changes occur more frequently then the big 
ones. The crossover operator is realized as an average value of the parent vectors. 

2.4. FITNESS FUNCTIONS 

Designing a fitness function is one of the essential tasks in the application of a genetic 
approach. In the paper different fitness functions are tested. We define one basis, which 
concerns only one objective, namely accuracy. This form can be enhanced by incorporating 
other objectives, which have to be satisfied during the rule extraction process. In this way 
we developed two other forms of fitness function. {This sentence is not clear enough and 
ought to be corrected} In this case the fitness function it is expressed by the number of 
correctly classified patterns (TP – True Positive), to the number of wrong classified 
examples (FP – False Positive). Formally, it is shown by (2).  
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where TP is the number of examples from training set, which attributes meet the conditions 
in the premises and their class is suitable to the one specified by subpopulation; FP is the 
number of examples, which satisfy the premises, but they belong to other class. 

This fitness function promotes individuals, which cover examples from the correct 
class by multiplying the value TP by 2 in the case when FP is equal to 0. The second 
criterion in the extracting rules is comprehensibility for human. It can be measured by the 
number of premises in the rule. This criterion also ensures the extraction of rules, which are 
more general. The modification fitC of fitness function satisfying this criterion is expressed 
by (3).  
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where fit is expressed by (4); β is the parameter set by the user; NoP is the number of 
premises in the rule; NoA is the number of attributes in the example. 

The modification (3) relies on the making allowance of a penalty, proportionally to the 
number of active premises. The role of β is to tune the value of a penalty in this way that it 
introduces proper change of basic fitness function fit. The next change in fitness function 
resulting from the experience acquired on the base of primary experiments relies on the 
reward of the rule for the rarity. Especially at the end of the search, the rule which covers 
one or more new examples (uncovered yet) is very valuable for the final effect. The part of 
fitness function rewarding an individual for the rarity is described by (4).  
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where T is the total number of examples in the given class covered by the evaluated 
individual; NCi is the number of other individuals in the population, which cover i-th 
example. 

The meaning of this modification is such that the rule gets a reward for each covered 
example. It will be inversely proportional to the number of rules, which cover the example. 
The fitness function fitR  respecting the element promoting for rarity is shown in (5). 

 RfitfitR *α+=  (5) 

where fit is the basic fitness function assigned? by 4?; R is the part expressing reward for the 
rarity defined by 6?; α is the coefficient set by the user.{It worth to mention what the 
numbers 4 and 6 mean} 

The offspring-rule covering an example, which was not covered by other individuals 
in the population, is additionally awarded during the comparison with its parents. It obtains 
an award equal to a half of maximum value of fitness function for a given class, what 
guarantees a presence of this individual in the population according to principle of 
preselection. It substitutes the worse parent. To avoid a domination of very good individuals 
a scaling of the fitness function was introduced, which is realized with the application a 
linear function.  

Presented above fitness functions are used for individuals’ evaluation in Level2. 
Because an evolution in Level2 is made for each individual in Level1, as a fitness value of 
the individual in Level1 we take a fitness of the best evolved individual in Level2. The 
roulette wheel selection is used in Level1. 

Our main objective is to find the set of rules for each class, covering as many as 
possible examples. Our approach to this problem is discussed in the next section. 
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2.5.  THE FINAL SET OF RULES 

In order to obtain as small as possible the final set of rules, in the whole population the 
rule that covers the most of the new examples is chosen {It is necessary to correct this 
sentence} . “New examples” means those examples, which are not covered by rules, which 
are the member of the final set of rules, already. All rules that belongs to the final set of 
rules have to satisfy the condition that they do not cover false examples (FP =0). As the first 
one, the rule that covers the biggest number of examples is incorporated to the final set of 
rules. Next, the rules that cover the biggest number of examples, uncovered yet, are inserted 
there. When there are two rules with the same number of the covered examples (uncovered 
yet), the rule with the less number of premises is chosen. The above described algorithm is 
presented in a formal form as follows: 
While there are uncovered examples in the training set and there is a rule covering almost one of these examples 

choose the rule with the biggest number of examples 
add this rule to the final set of rules 
mark the new covered examples as covered 

End {while} 

3. EXPERIMENTAL STUDIES 

The developed method was tested in two phases. First, we evaluated the influence of 
fitness function on a course and results of evolution. In all presented experiments 
benchmark data sets from [1] were applied. The results of the tests made with Iris, Breast 
Cancer and Heart data sets are presented in Tables 1., 2. and 3. 

Let us look at the Table 1. In the third column, sign ‘–‘ represents the option when the 
evolution was stopped after assumed number of generations, while X means that tests were 
stopped when the accuracy achieved 100%. This high accuracy relates to the bigger number 
of premises and the bigger number of rules. The tests confirm the appropriate influence of 
modified fitness function for an evolution process. It can be noticed that fitness function 
modified by complexity fitC causes decreasing of the number of premises but the accuracy is 
also smaller. Fitness function with rarity fitR gives better accuracy comparing to others. We 
combine both modifications in the fitness function fitCR and the improvements in both 
objectives can be observed. The same tendency can be observed on the base of experiments 
on Heart and Breast Cancer data sets (see Table 2. and 3.) 
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Table 1. The results of experiments for Iris data set 

Average accuracy (%) Average number of rules Average number of premises 
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50 X 100 99 100 98,6±0,6 1,4 2,2 2,9 2,1±0,8 1,2 2,4 1,6 1,7±0,3 fit  
50 - 100 98 98 97,6±1,1 1 1,3 2,1 1,4±0,5 1,1 2,4 1,2 1,5±0,2 
20 X 100 100 99 98,4±0,4 1,3 2,3 2,9 2,1±0,4 1,3 2,4 1,5 1,7±0,3 

Cfit  
50 - 100 98 98 97,6±1,1 1 1,2 2,1 1,4±0,3 1 2,3 1,1  1,5±0,3 
10 X 100 100 100 100 1,8 2,4 3,3 2,5±0,5 1,4 2,2 1,7 1,8±0,4 

Rfit  10 - 100 99 99 98,2±1,2 1 1,9 2,7 1,8±0,5 1,1 2,4 1,5 1,6±0,4 
10 X 100 100 100 100 1,2 2,5 3,2 2,3±0,4 1,3 2,2 1,7 1,7±0,4 

CRfit  
50 - 100 100 100 100 1 1,5 2,8 1,6±0,3 1 2,2 1,5 1,5±0,3 

 

Table 2. The results for the Breast Cancer data set 

Average accuracy (%) Average number of 
rules 

Average number of 
premises 
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fit  99 95 97,6±0,4 14 14 14±1,7 3,4 2,2 2,8±0,1 

Cfit  99 94 97,2±1 15 13 14±1,9 2,9 2  2,45±0,1 

Rfit  99 99 99±0,6 15 21 18±2 3,4 2,4 2,9±0,1 

CRfit  

200 

98 99 98,3±0,5 15 21 18±1,5 2,8 2,4 2,5±0,1 

 

Table 3. The results for the  Heart data set 

Average accuracy (%) Average number of rules Average number of 
premises 
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200 90 90 90±1 26 21 23,5±1,3 4,5 3,9 4,2±0,1 
Ifit  400 94 94 94±1,2 24 21 22,5±1 4,7 4,2 4,4±0,2 

92 92 92±0,7 23 20 21,5±1,4 3,5 3 3,2±0,2   

IZfit  94 94 94±1 24 21 22,5±1,1 4,3 3,9 4,1±0,1  

IUfit  98 97 97,5±1,5 27 25 26±1,5 4,7 4,3 4,5±0,2 

IZUfit  

400 

98 97 97,5±2 27 23 25±1,6 4,4 4,1 4,2±0,1 
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Table 4. The results of experiments for Animals data set with initial population created on the basis of examples 

Average number of rules Average number of premises 
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X 100 5 7 4 5,3 5,3±0,4 31 32 31 31 31,2±1  
Ifit  20 - 100 1,3 1,3 1,3 1 1,2±0,1 24 30 32 34 29,5±1,5 

 
The Animals data set contains 72 attributes. Such a big number of attributes causes that 

in the initial population there were only individuals with fitness function equal to 0. Even 
for a very large population (thousands individuals) this phenomena was observed. To 
resolve this problem the generation of initial population on the basis of training data set was 
introduced.  

Table 5. The results of experiments for the Animals data set with an initial population generated on the basis of 
examples and inactive premises 

Average number of rules Average number of premises 
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X 100 1 1 1 1 1 2,7 1,7 1,7 6 3,1±0,2 
Ifit  20 - 100 1 1 1 1 1 1 1 1 1 1 

 
The results are shown in the Table 4. The number of premises is relatively large. It is 

the result of the creation of the initial set of population, where each example becomes 
particular rule. To avoid this problem additionally we made an experiment setting all 
premises as inactive. This option joined with a relatively small number of mutated genes 
gives gradually improvement; the results are shown in Table 5. For each class only one rule 
was found, it indicates easy separation of classes. Similar experiments were performed with 
Iris, Breast Cancer and Heart data sets. In this case the results were not interesting, because 
the accuracy was equal to 0. In order to compare the obtained results with other methods 
described in [2], we used the 10 fold cross validation technique.  
That comparison is shown in Table 7. It presents the accuracy in % made on the basis of Breast 
Cancer. The accuracy for CGA is equal to 93 %, which is less than MLP+BP or NB or LDA 
because they have more than 96% [2]. This phenomenon in CGA can be caused by the applied 
mutation in Level2.  

 KB - 10 



KNOWLEDGE BASES AND AUTOMATIC CONCLUSIONS 

 
 
 

Fitness Accuracy - 
training (%) 

Accuracy – 
testing set 

(%) 
Iris 

fit  97  94.2 

Zfit  94 91 

Ufit  99 92 
Breast Cancer 

fit  97  93 

Zfit  94 91 

Ufit  99 92 

Table 6. The results of experiments for Iris and 
Breast Cancer data set with 10 fold cross 

validation 
Table 7. The comparison of CGA with other rule 
extraction methods, using 10 fold cross validation 

(Iris data set) 

Method 10-fold-cross-
validation (%) 

MLP+BP  96.7 
NB - naive Bayes 96.4 
LDA - linear discriminant 
analysis  

96.0 

C 4.5 tree 94.7±2.0 
CGA 93 
C 4.5 rules  86.7±5.9 

 

 
The mutation in the second level (causing the small changes) finds the boundaries 

separating classes which overfit the training examples. One of the solutions could be a 
modification of fitness function, which would reward individuals containing genes with 
wider ranges. Results presented in Table 6 show that fitness function with rarity increases 
accuracy with training data sets but decreases it when testing data set is used. It can be 
perceived as the overtraining effect, which  gives better accuracy with the training set but 
simultaneously it gives the lost of generality of the final set of rules. The same tendency can 
be notice with other fitness function.. These observations lead to the rejection of fitness 
function modified by rarity in real applications. In the developed method with the fitness 
function fit mutation derived from evolutionary strategies assures high accuracy for training 
examples but it does not produce more general rules. Probably, the results would be better 
with modified fitness functions. It is worth to notice that the comparison was possible for 
one data set, so the conclusion can not be general. 

4. CONCLUSIONS 

The novelty of the rule extraction method CGA is based on the combination of the 
genetic algorithm and a kind of evolutionary strategy. The method is able to extract rules 
describing the classified examples. Different fitness functions were tested. In the 
experiments the best results were achieved with modified fitness function, which rewards 
individuals for rarity and complexity. Comparing results given by CGA with other methods 
we used in the experiments only simple fitness function. To objectively evaluate the 
proposed method the further experiments for other data sets are necessary. However, even 
with this simple fitness function, the accuracy equal to 93 % is the satisfying solution. CGA 
was used as a method of rule extraction on the basis of a set of examples with known class-
membership.{Last two sentences should be cancelled or corrected}. 
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