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KERNEL K-MEANS CLUSTERING ALGORITHM 
FOR IDENTIFICATION OF GLAUCOMA IN OPHTHALMOLOGY 

This paper presents the improved version of the classification system for supporting glaucoma diagnosis 
in ophthalmology, proposed in [4]. In this paper we propose the new segmentation step based on the kernel K-
Means clustering algorithm which enable for better classification performance. 

1. INTRODUCTION 

This paper presents the improved version of the classification system for supporting glaucoma 
diagnosis in ophthalmology, proposed in [4]. Glaucoma is a group of ocular diseases characterized 
by the proceeding optic nerve neuropathy which leads to the rising diminution in vision field, 
ending with blindness. The optic disk structure (i.e. the exit of the optic nerve from the eye known 
as “blind spot” is comprised of a yellowish cup surrounded by a neuroretinal pink rim [2] (e.g. see 
Fig. 1a)). Glaucomatous changes in the retina appearance embrace various changes in the cup, as 
the result of nerve fibers damages. The method proposed in [4] enables automatic classification of 
digital fundus eye images (FEI) taken from classical fundus-camera into normal and glaucomatous 
ones.  

In this paper we propose the new cup segmentation method based on the kernel K-Means 
clustering algorithm which improves the accuracy of the method for supporting glaucoma 
diagnosing, proposed in [4]. The modified method is composed of the following three main stages: 

1. Segmentation of the cup region using kernel K-Means. 
2. Selection of the cup features using genetic algorithms. 
3. Classification of FEI using the support vector machine (SVM) classifier. 

2. KERNEL BASED K-MEANS CLUSTERING ALGORITHM 

Traditional K-Means clustering algorithm [1] aims to partition the data set composed of N 
samples 1,..., Nx x  into K clusters: 1,..., KG G

:

, and then returns the centre of each cluster:  as 
the representatives of the data set. The assumption behind this algorithm is the belief that the data 
space consists of isolated elliptical regions. To tackle the problem when that assumption is not held, 
one idea is to apply the transformation 

1,..., kc c

dR Q→Φ  that maps each data ix  from the input space dR  
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to a new space Q that satisfies the shape requirement. The transformation is done implicitly by 
means of a kernel function k, being the dot product in the new space Q (which should be a Hilbert 
space):  

 ( ) ( ) ( ),i j i jk x x x x= Φ ⋅Φ  (1) 

Let  denotes xi’s transformation into new space. Using kernel function the 
Euclidean distance between  and , the cluster center in the transformed space can be written as: 

( )iu x= Φ i

iu kt

 ( ) ( ) ( ) ( )2
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is the indicator function, ( ),i kD x c  is the Euclidean distance, K, N are the number of clusters and 
data points, respectively. The kernel-based K-Means algorithm can be stated as follows: 
1. Assign ( ),i kx Gω  )  with initial value, forming K initial clusters (1 ,  1i N k K≤ ≤ ≤ ≤

2. For each cluster kG  compute kG  and ( )2 kh G  

3. For each training sample ix  and cluster kG , compute ( )1 ,i k  and then assign ih x G x  to the 
closest cluster: 

 ( ) ( ) ( ) ( ) ( )1 2 1 21  if  , ,
,

0 otherwise 
i k k i j j

i k

j k h x G h G h x G h G
x Gω

⎧ ∀ ≠ + < +⎪= ⎨
⎪⎩

 (6) 

4. Repeat steps 2-3 until convergence 
5. For each cluster kG  select the sample that is closest to the center as the representative of kG : 

 
( )

( )( )
: , 1

arg min ,
i i k

k
x x G

c D x
ω =

= Φ i kt  (7) 

Mercer’s theorem [5] guarantees that as long as the kernel function exhibits certain 
mathematical properties (it is positive definite), then the algorithm implicitly operates in a higher 
dimensional space. 
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3. FEATURE SELECTION USING GENETIC ALGORITHMS 

In our approach, 30 geometric features were computed on the extracted cup region ([4]). 
Genetic algorithms were used to select the most significant features characterizing the shape of 
a cup region. A given feature subset was represented as a binary string with a zero or one in 
position i, denoting the absence or presence of feature i in the set. The initial population was 
randomly generated. We used the following fitness function: 

  (8) 410 0.4Fitness accuracy zeros= +

where accuracy is the accuracy rate that the given subset of features achieves (i.e. the performance 
of a classifier on a given subset of features), zeros is the number of zeros in the chromosome. As a 
classifier we used SVM with Gaussian kernel ([6]). The accuracy of the SVM classifier on a given 
subset of features required for the calculation of the fitness function is measured as a generalization 
error , calculated using the k-fold cross-validation method (k=10): eG

 ( )
( )e

TP TN
G

TP TN FP FN
+

=
+ + +

 (9) 

where TP — true-positive, FN — false-negative, TN — true-negative, FP — false-positive. The 
parameters we used in all the experiments are as follows: 1) the length of each chromosome: 30, 2) 
the population size: 120, 3) the maximum number of generations: 500, 4) the cross-over rate: 0.6, 5) 
the mutation rate: 0.005. The best chromosome (i.e. the best feature subset) is the one which is the 
most frequent among the chromosomes in the last generation. 

4. SVM CLASSIFIER 

Having a training set  composed of the examples ( , ,1i iS x y i N= ≤ ≤ ) n
ix R∈ , each belonging 

to a class labeled by { }1, 1−iy ∈ , the goal of the SVM classifier [6] is to find the optimal separating 
hyperplane (OSH) — i.e the one which maximizes the separation margin which is a distance 
between the hyperplane and the closest data point. In the case when the data points are not linearly 
separable, a non-linear transformation ( )xφ  is used to map the data vector x into a higher 
dimensional space using a kernel function. In our experiment, a nonlinear SVM with a Gaussian 
radial basis kernel: 

 ( ) ( )2, expK x z x zγ= − ⋅ −  (10) 

where γ  is a constant, was used. The problem of finding the OSH in general is equivalent to the 
maximization of the function: 

 ( ) (
1 1 1

1 ,
2

N N N

i i j i j
i i j

W yα α α α
= = =

= −∑ ∑∑ )i jy K x x  (11) 
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subject to the constraints: 

 
1

0,  0
N

i i i
i

y Cα α
=

= ≤ ≤∑  (12) 

where iα  are the N nonnegative Lagrange multipliers, C is a regularization parameter. Finally, the 
decision function for classifying a new data point x can be written as follows: 
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1
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i i i
i

f x y K x xα
=

⎛
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∑ b

⎞
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where sN  is the number of support vectors, iα , b are constants, all determined through the 
numerical optimization during learning. 

5. EXPERIMENTS 

5.1. SEGMENTATION OF THE CUP REGION 

The data set used for this research consists of 100 digital fundus eye images of patients with 
glaucoma and 100 images of normal patients. These images are part of the data set acquired from 
the Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nuremberg, Prof. Dr 
George Michelson. To produce a “gold standard” segmentation, an ophthalmologist marked 
manually the boundary of the cup in each of the images. To decrease the computational time, the 
cup segmentation was performed in a window, automatically computed based on the cup 
localization procedure described in [4]. Moreover, we performed the subsampling procedure of the 
computed window, i.e. we chosen every 10-th pixel. The 3-dimensional feature space (L, a, b) was 
used for clustering, i.e. each image pixel was described by three components of Lab color model. 
All features were normalized using z-score normalization [1]. The number of clusters was chosen as 
4, i.e. corresponding to the 4 anatomical parts of the FEI: the retina, blood vessels, neuroretinal rim 
and the cup. The remaining pixels in the window were assigned to the groups revealed during 
clustering based on the distance from representatives of the groups. The cup in the segmented image 
was chosen as the region having the smallest value of a. Fig. 1b) presents the segmented image 
from the FEI shown in Fig. 1a) with the contour of the cup region imposed on it. 

a) b) 

Fig. 1. a) The automatically selected window from input FEI with the cup in the central part  
b) the segmentation result with the contour of the cup region imposed 
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5.2. MODEL SELECTION AND TESTING 

The set of 200 segmented cup regions was divided into two disjoint subsets: 1) the training 
set: 150 images, 2) the testing set: 50 images. In each of those sets there were equal numbers of 
glaucomatous and normal cups. The training set was used for model selection: the suboptimal 
feature vector calculation based on genetic algorithms, setting SVM classifier parameters 
(performed by 10-fold cross-validation method) and final SVM learning. The feature selection 
described in subsection 3 was performed for different combinations of the classifier parameters C, a 
regularization parameter and γ , a Gaussian kernel one. For each such combination we noted down 
the best subset of features with the corresponding value of the generalization error . As the final 
subset of features we took the one with the smallest value of : 

eG

eG

 ( )0 2 3, , FI Rυ φ=  (14) 

where: 

 ( )2 2
2 20 02 4 11φ η η η= + +  (15) 

is Hu invariant moment, in which 20 02 11, ,η η η  are normalized central moments, 

 ( ) ( ) ( )2 2
3 20 21 03 12 11 30 03 21 12 02 30 12 21I μ μ μ μ μ μ μ μ μ μ μ μ μ= − − − + −  (16) 

is compound, invariant moment, 

 h
F

v

LR
L

=  (17) 

is Feret coefficient, where: 
hL  - the maximal diameter in the horizontal direction 

vL  - the maximal diameter in the vertical direction. 
The selected feature vector 0υ  corresponds to the combination of the classifier parameters: 

, 100C = 2.5γ = . Finally, the classifier was trained on the set composed of feature vectors 0υ  
computed on the training set. 

Classifier performance was tested on the feature vectors 0υ  calculated on the testing set. The 
following results were obtained: the mean sensitivity which is the percent of the correctly classified 
glaucomatous cases: 

 93%TPsensitivity
TP FP

= =
+

 (18) 

and the mean specificity which is the percent of the correctly classified normal cases: 

 97%TNspecificity
TN FN

= =
+

 (19) 

 171



IMAGE PROCESSING 

 172 

6. CONCLUSIONS 

In this paper we described a novel kernel K-Means clustering algorithm that can find clusters 
non-linearly separable as well as clusters of varying shapes and sizes. We also demonstrated 
application of the proposed clustering algorithm in the segmentation of the cup region on FEI taken 
from classical fundus camera for the purpose of supporting glaucoma diagnosing in ophthalmology. 
The proposed method enables automatic classification of digital FEI into normal and glaucomatous 
ones. The obtained classification results are encouraging. It is expected that the new method, after 
clinical tests, would support glaucoma diagnosis based on digital FEI obtained from fundus camera.  

The Authors would like to thank prof. George Michelson from Department of 
Ophthalmology, Friedrich–Alexander–University Erlangen–Nuremberg for the possibility to access 
a database with fundus eye images, as well as for medical consultation. 
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