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SPARSE BAYESIAN LEARNING IN CLASSIFYING FACE FEATURE VECTORS 

The Relevance Vector Machine (RVM), a Bayesian treatment of generalized linear model of identical 
functional form to the Support Vector Machine (SVM), is the recently developed machine learning framework 
capable of building simple models from large sets of candidate features. The paper describes the application of 
the RVM to a classification algorithm of face feature vectors, obtained by Eigenfaces method. Moreover, the 
results of the RVM classification are compared with those obtained by using both the Support Vector Machine 
method and the method based on the Euclidean distance. 

1. INTRODUCTION 

The aim of the machine learning is extracting the structure from the data. Anyhow it is often 
difficult to solve problems like classification in the space, in which the underlying observations 
have been made. Kernel-based learning methods like the Support Vector Machine (SVM) [7] or the 
Relevance Vector Machine (RVM) [4] use implicit mapping of the input data into a high 
dimensional feature space defined by a kernel function and the learning takes place in the feature 
space. An interesting property of kernel-based systems is that, once a valid kernel function has been 
selected, one can practically work in spaces of any dimension without paying any computational 
cost, since feature mapping is never effectively performed. 

A human face recognition is a complex problem which utilizes various techniques of image 
and data processing. Its most general aim is to provide a method of measuring similarity between 
any pair of images containing human faces. In this paper a possibility of applying the mentioned 
RVM learning method to a problem of face recognition is analysed and the results of face feature 
vectors classification are presented. 

2. GENERALIZED LINEAR MODELS 

In supervised learning it is given a set of examples of input vectors { }  along with 

corresponding targets 

N
nnx 1=

{ }N
nny 1= , the latter of which might be real values (in regression) or class label 

(in classification). From this training set a model of the dependency of the targets on the inputs is 
learned with the objective of making accurate predictions of y for previously unseen x.  
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Generalised linear models, commonly used form of models for both classification and 
regression problems, take the form: 
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where the output is linearly-weighted sum of M, generally nonlinear and fixed, basis functions { }iϕ  
and the learning is the process of finding some weights which offer a good fit to the provided 
training data. When it is considering binary classification problems, following statistical convention 
the logistic link function is applied to the model output: 
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This renormalizes the model output such as 1)(0 ≤≤ xσ , and can be interpreted as a 
probability that x is a member of the “positive” class for the classification problem. 

3. THE RELEVANCE VECTOR CLASSIFICATION 

The Relevance Vector Machine (RVM) [4] has been fashioned from a Sparse Bayesian 
Learning (SBL) framework [8] for learning generalized linear models, whose predictors are sparse 
in that they contain relatively few non-zero  parameters. The RVM is named by analogy to the 
better known Support Vector Machine method [7], which is also a kind of sparse generalized linear 
models trainer. 

iw

Initially the RVM was presented as an alternative and direct competitor to the SVM. The 
SVMs can only be applied to learning a restricted subset of generalized linear models – those that 
can be defined by kernel functions (basis functions mentioned above, one basis function for each 
example in the training set) satisfying Mercer’s condition [2] – while the RVM can learn a model 
with any collection of basis functions. Another disadvantage of the SVM is ‘hard’ binary decision 
while the RVM provides the conditional distribution p(t|x) in order to retrieve information about 
uncertainty in prediction. The key feature of the Support Vector Classification method is that its 
predicting function attempts to minimize a measure of error on the training set while simultaneously 
maximizing the “margin”, in the feature space, between the two classes. It leads to necessity to 
estimate the error/margin trade-off parameter C, which generally entails a cross-validation 
procedure. On the other hand in the RVM learning process only the parameters of kernel function 
need to be estimated. 

Briefly, in the Relevance Vector Machine method for solving a binary classification 
problem [5], where each training datum xn has a label tn (either 0 or 1), the probability that the data 
set is correctly labelled given some classifier model )(xσ  can be represented as: 
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Assuming that the training data is correctly labelled, Bayes’ theorem allows to turn this 
expression around and infer likely values of the weights given some labelled data: 
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where prior distribution over weight vector  is a zero-mean Gaussian: w
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with α  a vector of N +1 hyperparameters. Importantly, there is an individual hyperparameter 
associated independently with every weight, moderating the strength of the prior. The most 
probable values of the hyperparameters are iteratively estimated from the training set data in 
manner described in [5]. Sparsity in this model is achieved because in practice one can find that the 
posterior distributions of many of the weights are sharply (indeed infinitely) peaked around 
zero [8]. The training vectors associated with the remaining non-zero weights are called relevance 
vectors. It is interesting that, unlike for the SVM, the relevance vectors are some distance from the 
decision boundary (in input data vectors space), appearing more “prototypical” or even “anti-
boundary” in character [5]. 

4. HUMAN FACE RECOGNITION 

Human face recognition is a complex problem which utilizes various techniques of image and 
data processing. Its most general aim is to provide a method of measuring similarity between any 
pair of images containing human faces. When a face is detected in the image and normalized 
(Figure 1), feature extraction must be applied to create a feature vector describing the face. The 
feature vectors should be easily comparable with each other in order to measure similarity between 
the images, from which they have been derived.  

One of the feature extraction methods is based on the Principal Component Analysis and is 
called the Eigenfaces method [6]. This method creates a face space and makes it possible to project 
a normalized face image from the input image space into a less dimensional face space. Therefore, 
after the feature extraction an image is represented by a point in the face space. Similarity between 
the Eigenfaces feature vectors can be measured based on Euclidean or Mahalanobis distance 
between two points in the face space. The smaller the distance, the greater value of similarity.  

Other approach is to use a classifier based on machine learning for assessing the similarity. It 
is possible to learn such a classifier to discriminate between all the classes of a given data set, in 
which one class consists of feature vectors belonging to one person. The main drawback of this 
method is that a classifier is fitted to a certain case and if there emerges a need for adding a new 
class, it is necessary to retrain the classifier.  
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Fig. 1. Original image with detected face and facial features (left) and the same image after the normalisation (right) 

There is also a more universal approach in which a difference between two feature vectors is 
analyzed. If there are two feature vectors v1 and v2 to be compared, at first an absolute difference 
vector vd is created: 

 21},...,2,1{ ii
d
i vvvni −=∈∀ , (6) 

where n is the number of components of the vectors v1, v2 and vd . The difference vector vd can have 
either intra-personal or extra-personal nature depending on classes, from which the feature vectors 
have been derived. If two feature vectors belong to one class, their difference vector has an intra-
personal nature. Otherwise, if two feature vectors from different classes are subtracted from each 
other, an extra-personal difference vector is created. Hence, a classifier can be trained to distinguish 
between these two classes of difference vectors and decide whether two feature vectors describe the 
same face or not.  

5. RESULTS 

All the experiments for RVM were run in the MATLAB environment with using 
"SparseBayes V1.0" (Matlab code to implement sparse Bayesian regression and classification 
models)1 written by M. Tipping. For the numerical experiments there were used images from the 
Feret face image database [3].  

During the experiment 128-dimensional feature vectors were generated by the Eigenfaces 
method mentioned above. For the training stage, as the input vectors, there were randomly chosen 
400 vectors of absolute differences in subset of input image of the same person (called internal 
difference vectors) for class labelled “1” and 400 vectors of absolute differences corresponding with 
different persons (called external difference vectors) for class labelled “0”. Means and standard 
deviations of input vectors of training data set are given in Figure 2 and Figure 3. 

                                              
1 available at http://www.research.microsoft.com/mlp/rvm/SparseBayesV1.00.tar.gz 
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Fig. 2. Means of feature vectors of training data set. 
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Fig. 3. Standard deviations of feature vectors of training data set. 

For testing stage two sets, containing 1000 images each, were created. The first one will be 
denoted FeretA and consisted mainly of images taken in good lighting conditions which were 
relatively easy to recognize. The second set, which will be denoted FeretC, had more difficult cases 
for recognition and this could be the main reason for a significant difference in the classification 
results. In FeretA there were images of 395 different persons and in FeretC – 237. From both sets a 
template subset was distinguished which contained one image per person. During the experiment 
every 128-dimensional feature vector which was generated by the Eigenfaces method from the 
query set, FeretA or FeretC respectively, was compared with all the vectors from its corresponding 
template set. Absolute difference vectors for each pair of vectors, 395 or 237 for FeretA or FeretC 
respectively, were classified by the RVM method.  

The RVM was trained for three different kernel functions: Gaussian with width parameter s 
defined as  
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Laplacian with width parameter s defined as  
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and Cauchy (heavy tailed) kernel function with width parameter s defined as 

 

1

2

2

21),(
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+=

s
xx

xxK i
i  (9) 

Experiments were performed for parameters s equal 1, 10 and 100. 
For the classification of images of FeretA, there were taken 1000 128-dimensional feature 

vectors obtained from PCA transformation described above and 395 128-dimensional feature 
vectors representing 395 classes. For each vector x from the 1000-element set there were computed 
395 vectors of absolute difference with the vectors from the 395-element set. Classifying these 
vectors a 395-dimensional vector y was obtained. The maximal positive value of y components 
gives, by its index, information about the class the element x is classified to. Most desired values of 
components of y are all negative but one positive, nevertheless such a situation appears rarely. 

The results of the described experiment are presented in Table 1. The first column of the table 
contains only type of kernel function, since for all considered parameters s the results are exactly 
equal. It is worth mentioning that all the classifiers give 100% classification accuracy (fraction of 
correctly classified vectors in percents) on the training data and all the classifiers have 412 non-zero 
parameters in the prediction function (411 relevance vectors). 

 

Table 1. The results of classification for test set FeretA. 

kernel fuction 
classification 

accuracy 
PN vectors AN vectors 

Gaussian 51.9 % 519 481 
Laplacian 51.9 % 519 481 

Cauchy kernel 85.7 % 519 481 
 
The column labelled “PN vectors” gives the information about the number of resulting 

vectors that have all but one components negative and one positive and the column labelled “AN 
vectors” gives the information about the number of resulting vectors that have all components 
negative. The numbers in the two last columns indicate that in all cases of classification resulting 
vectors have either all components negative or all but one components negative and one positive. 
Moreover, the classifier based on Cauchy kernel, unlike the two others, has the ability of correct 
classification of some resulting vectors having all components negative. 

The results of classification of FeretC images are presented in Table 2. For the test set there 
were taken 1000 128-dimensional feature vectors obtained from PCA transformation described 
above and 237 128-dimensional feature vectors representing 237 classes. As before for each vector 
x from the 1000-element set there were computed 237 vectors of absolute difference with the 
vectors from the 237-element set. Classifying these vectors a 237-dimensional vector y was 
obtained. The maximal positive value of the y components gives, by its index, information about the 
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class the element x is classified to. Also in this case all considered parameters s gave the exactly 
equal results for each type of kernel function. 

Table 2. The results of classification for test set FeretC. 

kernel fuction 
classification 

accuracy 
PN vectors AN vectors 

Gaussian 24.3 % 237 763 
Laplacian 24.3 % 237 763 

Cauchy kernel 65.7 % 237 763 
 
Analyzing the two last columns in Table 2, as in experiments for the FeretA dataset, one can 

see that in all cases of classification the resulting vectors have either all components negative or all 
components negative but one positive. However now the classifiers based on Gaussian or Laplacian 
kernel have the ability of correct classification of some resulting vectors having all components 
negative. Nevertheless the classification accuracy of classifiers based on Cauchy kernel is greater 
than in case for the others. 

In numerical experiments also there was considered prediction function with the  parameter 
w0 was equal zero for classifiers based on Cauchy kernel with width parameter equal 1. The 
classifier gives 78.8% classification accuracy on the training data and has 611 non-zero parameters 
in prediction function (611 relevance vectors). However, the classifier gives 85.6% classification 
accuracy for test set FeretA and 65.7% for test set FeretC. Nevertheless it is worth mentioning that 
in this case classification resulting vectors have always at least two components positive. 

For comparison classification results, a few experiments were made using the Support Vector 
Machines [1] method and method based on Euclidean distance. In the case of the SVM, the 
Laplacian kernel (8) with s=1.45 and polynomial kernel (10) with s=1 and d=2, defined as 

 ( )dT
ii sxxxxK +=),(  (10), 

were tested.  
The results of the classification for FeretA and FeretC, obtained for the best SVM classifier 

parameters (chosen in cross-validation procedure) C = 1 and 001.0=ε  in case of Laplacian kernel 
and C = 1 and 001.0=ε  in case of Polynomial kernel, are presented in Table 3. This table also 
contains classification results for method based on the Euclidean distance. 

 

Table 3 The results of the SVM and Euclidean distance classification. 

classification accuracy 
comparison method 

FeretA FeretC 
Laplacian 83.5 % 63.5 % 

SVM 
Polynomial 85.4 % 68.4 % 

Euclidean distance 82.9 % 66.6 % 
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6. CONCLUSIONS 

In this paper an application of the Relevance Vector Machine to face feature vectors 
classification has been presented. The results of the RVM classification were compared to those 
obtained by using both the Support Vector Machine method and the method based on Euclidean 
distance.  

The experiments have confirmed that the RVM classification of difference vectors can be 
used instead of calculating the Euclidean distance between two feature vectors to judge whether 
they belong to the same person or to different ones. Moreover, the examples presented in this paper 
have effectively demonstrated that the Relevance Vector Machine can attain a comparable level of 
generalization accuracy as the well-established Support Vector approach. Importantly, it benefits 
from absence of any additional nuisance parameters to set, apart from the need to choose the type of 
kernel and any associated parameters. Furthermore it should be noted that the RVM methodology is 
applicable to arbitrary basis functions, not limited to Mercer kernel as in the SVM. However, the 
principal disadvantage of Relevance Vector methods is in the complexity of the training phase 
requiring O(N 2) storage and O(N 3) computation. Thus for large datasets, this makes training 
considerably slower than for the SVM. 
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