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APPLICATION OF THE ADAPTIVE NOISE REMOVAL TECHNIQUE  
TO THE ENHANCEMENT OF cDNA MICROARRAY IMAGES 

In this paper a novel class of filters designed for the removal of impulsive noise in colour images is 
presented. The proposed filter family is based on the kernel function which controls the noise suppression 
properties of the new filtering scheme. The comparison of the new filtering method with the standard techniques 
used for impulsive noise removal indicates its superior noise removal capabilities and excellent structure 
preserving properties. The proposed filtering scheme has been successfully applied to the denoising of the cDNA 
microarray images. Experimental results proved that the new filter is capable of removing efficiently the 
impulses present in multichannel images, while preserving their textural features. 

1. INTRODUCTION 

The correction of the signal distorsions is a digital process, by which disturbances introduced 
by the sensor system are rectified, with the goal being to obtain the image or generally the signal, 
which corresponds as closely as possible to the output of an ideal imaging system. Thus, correcting 
signal artifacts, in practice means adjusting the characteristics of the imaging system to meet 
specific demands of the human observer or the computer vision system, [17,18,21].  

Digital image processing is based on the conversion of a continuous image field into an 
equivalent digital form. The synthesis of images from the signals arising from various sensor 
systems is accomplished by a digital process directed to transforming the signal into a form 
allowing visual or machine perception. The requirements for an ideal conversion system are usually 
expressed in terms of certain technical properties such as the resolution of the imaging systems, 
photometric accuracy, quantization levels, intensity of intrinsic noise and many others.  

Improvement of the image quality has always been one of the central tasks of digital image 
processing. In modern terms, improvements in sensitivity, resolution and noise reduction have 
equated higher quality with greater informational throughput. Image noise is an unwanted feature, 
which is either contained in the relevant light signal or is added by the imaging process and it 
compromises a precise evaluation of the light signal distribution, which should be measured.  

During image formation, acquisition, storage and transmission many types of distorsions 
limit the quality of digital images. Transmission errors, periodic or random motion of the camera 
system during exposure, electronic instability of the image signal, electromagnetic interferences, 
sensor malfunctions, optic imperfections or aging of the storage material, all disturb the image 
quality.  

                                              
*  Silesian University of Technology, Dept. of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland 



IMAGE PROCESSING 

In many practical situations, images are corrupted by the so called impulsive noise caused 
mainly either by faulty image sensors or due to transmission errors resulting from man-made 
phenomena such as ignition transients in the vicinity of the receivers or even natural phenomena 
such as lightning in the atmosphere.  

In this paper we address the problem of impulsive noise removal in colour images and 
propose an efficient adaptive technique capable of removing the impulsive noise and preserving 
important colour image features.  

The paper is organized as follows. In Section 2 a short overview of the basic multichannel 
filtering schemes is provided. Then the new filtering approach is introduced and its similarity to 
existing filtering schemes is discussed. Section 4 covers the experimental results performed on the 
test images contaminated with impulsive noise. Section 5 is devoted to the application of the 
proposed technique to the denoising of the images of microarrays. The paper ends with a brief 
conclusion.  

2. VECTOR MEDIAN BASED FILTERS 

Mathematically, a 1N N2×  multichannel image is a mapping l mZ Z→

( i im

 representing a two-
dimensional matrix of -component samples (pixels), m 1 2i i )x x … x= , , ,x  lZ∈ , where l  is the 
dimension of the image domain and  denotes the number of channels, (in the case of standard 
color images, parameters l  and  are equal to 2 and 3, respectively). Components 

m
m ikx , for 

 and , , represent the colour channel values quantified into the 
integer domain, [11].  

1 2k …= , , ,m
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The majority of the nonlinear, multichannel filters are based on the ordering of vectors in a 
sliding filter window. The output of these filters is defined as the lowest ranked vector according to 
a specific vector ordering technique, [2,8].  

Let the colour images be represented in the commonly used RGB color space and let , , 
,  be  -dimensional samples from the sliding filter window W , with  being the central 

element in W . The goal of the vector ordering is to arrange the set of  vectors , , ,  
belonging to W  using some sorting criterion. In [22] the ordering based on the cumulative distance 
function  has been proposed  
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where ( i jρ ,x x  is a function of the distance between  and . The increasing ordering of the 
scalar quantities 

ix jx

1 2{ n}R R … R, , ,  generates the ordered set of vectors (1) (2) ( ){ }n…, , ,x x x .  
One of the most important noise reduction techniques is the Vector Median Filter (VMF), [2] 

for which jiji xxxx −=),(σ . Given a set W  containing  vectors, the Vector Median of the set is 

defined as vector  satisfying  

n

(1) W∈x

 (1) j i j i j
j j

W− ≤ − , , ∈∑ ∑x x x x x x .  (2) 
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In [1, 24, the VMF concept has been generalized and the so-called Weighted Vector Median 
Filter (WVMF) has been proposed. Using the Weighted Vector Median approach, the filter output is 
the vector  belonging to W , for which the following condition holds  (1)x

 (1)
1 1

( ) ( ) 1
n n

j j j k j
j j

k … nψ ρ ψ ρ
= =

, ≤ , , = ,∑ ∑x x x x , .  (3) 

If 1 1ψ >  and 1kψ =  for , (2k …= , ,n }1{ 1 1 1…ψ ψ= , , , ), then the Central Weighted VMF 
(CWVMF) is obtained, [20,19,3].  

An efficient modification of the CWVMF called Modified CWVMF (MCWVMF) was 
proposed in [14-16]. The modified technique has the ability of noise removal, while preserving fine 
image details, (lines, edges, corners, texture) and it outperforms the standard CWVMF as shown in 
[14,15].  

Within the framework of the ranked type nonlinear filters, the orientation difference between 
input vectors can also be used to remove samples with atypical directions. The Basic Vector 
Directional Filter (BVDF) is a ranked order filter, similar to the VMF, which uses the angle 
between two vectors as the distance measure. In the directional processing of colour images, 
[13,23] each input vector  is associated with the aggregated angular measure.  kx

The sample  associated with the minimal angular distance, i.e. the sample minimizing the 
sum of angles with other vectors, represents the output of the BVDF, [23]. A drawback of the 
BVDF is that since it uses only information about vector directions (chromaticity information), it 
cannot remove achromatic noisy pixels.  

(1)x

To improve the efficiency of the directional filters, another method called Directional-
Distance Filter (DDF) was proposed, [6]. The DDF is a combination of VMF and BVDF and is 
derived by simultaneous minimization of their defining functions,[23]. Another efficient rank-
ordered operation called Hybrid Directional Filter (HDF) was proposed in [5]. This filter operates 
on the direction and the magnitude of vectors independently and then combines them to produce a 
final output.  

3. PROPOSED FILTERING DESIGN 

The well known local statistic filters constitute a class of linear minimum mean squared error 
estimators and are based on the non-stationarity of the signal and the noise model, [7]. These filters 
make use of the local mean and the variance of the input set 1 2{ nW x x … x }= , , ,  and define the filter 
output for the grey-scale images as  

 ( ) (1 )ˆ ˆi ii i iy x x ˆ ix xα α= + − = + − xα ,  (4) 

where ˆ ix  is the arithmetic mean of the image pixels belonging to the filter window W  centered at a 
pixel position  and i α  is a filter parameter usually estimated through, [20]  
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2 2 2 2 2max 0 max 0 1 nx n ν σ α σ ν⎧ ⎫ ⎧ ⎫
⎬
⎭

= , − , = , − / ,⎨ ⎬ ⎨
⎩ ⎭ ⎩

 (5) σ

where 2ν  is the local variance calculated from the samples in the filter window and 2
nσ  is the 

estimate of the variance of the noise process. If nσν >> , then 1α ≈  and practically no changes are 
introduced. When nv σ< , then 0α =  and the central pixel is replaced with the local mean. In this 
way, the filter smooths with the local mean, when the noise is not very intensive and leaves the 
pixel value unchanged, when a strong signal activity is detected. The major drawback of this filter is 
that it fails to remove impulses and leaves noise in the vicinity of high gradient image features.  

Equation (4) can be rewritten using the notation 1ix x= , as  

 ( )11 1 1 1 2(1 ) (1 ) (1 )ˆ ˆii ny x x x x … x nx xα α α α α ψ= + − = + − = − + + + / ,  (6) 

with 1 (1 ) (1 )nψ α α α= − + / −  and the local statistic filter defined by (4) is reduced to the Central 
Weighted Average, with a weighting coefficient 1ψ . In this way the set of weights 1{ 1 1 1}…ψ , , , ,  is 
assigned to the set of pixels in the filtering window 1 2{ }nx x … x, , ,   
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If the weighting is applied to the ordered sequence of grey-scale samples belonging to 
:=W (1){x , …, ( )x μ ,…, ( )}nx , where (1)x  and ( )nx  are the minimal and maximal pixel values and ( )x μ , 

( (n 1) 2)μ = + /  denotes the median of the input set, then  
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Taking the weighting set {1 1 1}… …μψ, , , , ,  special emphasis is given to the median of the input 
set ( )x μ . Hence  
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which is a compromise between the median ( )x μ  and the average 1x̂  controlled by the parameter α .  
Let us now apply a weighting structure defined by the weights {1 0 0}… …μψ, , , , , . Such a 

setting of the weights leads to the output defined by  
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If we work on the set of ordered vectors (1) (2) ( ){ n… }, , ,x x x  then (11) can be rewritten as  

 1 1 1 (1) 1
1

1 (1 )
1

y ψ α α
ψ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= + = + −
+

x x x x(1) ,

}

 (11) 

where the weighting set is defined as: 1{ 0 0 1 0… …ψ , , , , , ,  in which the weight 1ψ  is assigned to the 
Vector Median  of the input set from W  and 1 is assigned to the central pixel .  1x 1x

Clearly, the new filter structure, which will be denoted as KVMF (Kernel based VMF), 
defined by (11) is similar to approaches defined by (4), (6) and (9). However, as our aim is to 
construct a filter capable of removing impulsive noise, instead of the mean value, the VMF 
output is utilized and the noise intensity estimation mechanism is accomplished through the 
coefficient α , which can be defined as a kernel function, known from the nonparametric 
probability density estimation, (Tab. 1, Fig. 1). 

 

(L)  (G)  (C)  (T)   

Fig. 1. Plots of the kernel functions: L-Laplacian, G-Gaussian, C-Cauchy, T-Triangle, (see Tab. 1). 

Table 1. Krenel function, x=<-1,1>, h = <0,∞), [f(x)]+ denotes f(x) for x>0 and 0 otherwise  
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The proposed KVMF technique is a compromise between the VMF and identity operation. 

When an impulse is present, then it is being detected by ( ))1(1 xxf −=α , which is a decreasing 
function of the distance between the central pixel xi = x1 and the Vector Median x(1), and the output 
y1 is close to the VMF as α approaches 0. If the central pixel is not disturbed by the noise process, 
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then α is close to 1 and the output is close to the original value x1. If the central pixel in xi is 
denoted as x1, the vector norm as ⋅  and the coefficient α is replaced by kernel function κ , then 

 ( ) ( ),, )1(1)1(1)( xxxxxy ii −⋅Κ+=  (12) 

Table 2. Efficiency of the proposed filter in comparison with standard multichannel filters using the LENA image;  
hopt and hest denote the optimal (best possible) and estimated value of the bandwidth parameter of the appropriate kernel 

function. 

Filtering efficiency, (PSNR, [dB])  
Noise  p = 1% p = 3% p=5% 
Kernel  hopt hest hopt hest hopt hest 

40.75  40.70  37.92 37.90 36.38 36.35  

39.22  39.22  36.96 36.95 35.68 35.67  

39.65  39.39  37.11 37.03 35.72 35.67  

40.46  40.45  37.76 37.76 36.27 36.27  

L  
G  
C  
T  
E  

40.87  40.81  37.96 37.94 36.39 36.34  

VMF  33.33  32.94  32.58   
DDF  32.90  32.72  32.25   
BDF  32.04  31.81  31.14   
HDF  33.28  32.89  32.49   

CWVMF  36.98  34.04  32.52   
MCWVMF  38.54  34.88  33.42   

 ( ))1(1)1(1 ,)1( xxfxxyi −=−+= κκκ  (13) 

In this way the proposed structure can be seen as a modification of the commonly used 
techniques applied for the suppression of the Gaussian noise. However, in the described technique 
we replace the arithmetic mean of the pixels in W with the Vector Median and such an approach 
proves to be capable of removing strong impulsive noise, while preserving the image details. 

It is interesting to observe that the filter output yi lies on the line joining the vectors xi(x1) and 
x(1) and depending on the value of the kernel function κ , it slides from the identity operation (x1) to 
the vector median x(1), (Fig. 2). 

The efficiency of the proposed filtering scheme depends strongly on the bandwidth parameter 
h in the kernel function, (Tab. 1). The experiments performed on a wide range of natural images 
contaminated by different types of impulsive noise with varying intensities have shown that 
satisfactory efficiency of the proposed algorithm is achieved when using the following 
approximation of the optimal bandwidth 
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where σ̂  is the mean value of the approximation of standard deviation, calculated using the whole 
image or randomly selected image pixels and 1γ  is the coefficient of the kernel function taken from 
Tab. 1. The comparison of the real and estimated values of the bandwidth is shown in Fig. 3. As can 
be seen, a very good approximation has been achieved for the simplest linear triangle function (T), 
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which is also reflected in terms of the achieved PSNR values presented in Tab. 2. Therefore the use 
of the triangular kernel function is recommended in applications in which the processing time plays 
a crucial role.  

4. EXPERIMENTAL RESULTS 

The noise modelling and evaluation of the efficiency of noise removal methods using the 
widely used test images allows the objective comparison of the noisy, restored and original images. 
In this paper we assume a noise model, [12,17] which reflects well the signal corruption and allows 
to simulate the correlation among noisy image channels. The sample distortion is given by 

  (15) 
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where o is the original signal, p is the sample corruption probability and p1, p2, p3 are corruption 
probabilities of each colour channel, so that ∑ =

4

1
1kp . The impulses vi are random-valued 

variables in the range [0,255] and pk=0,25 was chosen for the evaluations. The impulsive noise 
suppression efficiency was measured using the PSNR 
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The efficiency of the proposed filtering approach is summarized in Tab. 2 and also presented 
in Fig. 4. As can be seen the dependence on the kind of the kernel function is not, as expected, very 
strong. The main problem however, is to find an optimal bandwidth parameter h, as the proper 
setting of the bandwidth guarantees good performance of the proposed filtering design. 

The comparison of the efficiency of the proposed scheme in terms of PSNR for the optimal 
values of h and estimated by the rule of thumb defined by (14) is shown in Tab. 2 and in Fig. 3. 
Practically the hest yields almost the best possible impulsive noise attenuation for all applied kernels.  

The illustrative examples depicted in Fig. 5 show that the proposed filter efficiently removes 
the impulses and preserves edges and small image details. Additionally due to its smoothing nature 
it is also able to suppress to some extent the Gaussian noise present in natural images.  

5. APPLICATION TO DENOISING OF MICROARRAY 

IMAGES 

The cDNA microarray is a popular and effective method for simultaneous assaying the 
expression of large numbers of genes and is perfectly suited for the comparison of gene expression 
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in different populations of cells. A microarray is a collection of spots containing DNA, deposited on 
the surface of a glass slide. Each of the spots contains multiple copies of a single DNA sequence, 
[9,4,10].  

The probes are tagged with fluorescent reporter molecules, which emit detectable light when 
stimulated by laser. The emitted light is captured by a detector, which records the light intensity. 
When the laser scans the entire slide, a large array image containing thousands of spots is produced. 
The fluorescent intensities for each of the two dyes are measured separately, producing a two-
channel image of very large dimensions.  

The intensities provided by the array image can be quantified by measuring the average or 
integrated intensities of the spots. However, the evaluation of microarray images is a difficult task 
as the natural fluorescence of the glass slide and non-specifically bounded DNA or dye molecules 
add a substantial noise floor to the microarray image. To make the task even more challenging, the 
microarray images are also afflicted with discrete image artifacts, such as highly fluorescent dust 
particles, unattached dye, salt deposits from evaporated solvents, fibers and various airborne debris. 
So, the task of fast microarray image enhancement and especially the removal of artifacts is of 
paramount importance.  

The good performance of the proposed switching scheme, when applied to the denoising of 
the microarray images can be observed in Fig. 6, which depicts the results of impulsive noise 
suppression. It can be noticed that the proposed filter removes the spikes only, while preserving the 
textural information. Therefore the application of the proposed filter is advantageous, as it is 
extremely fast and does not change the statistical properties of the spots, which enables accurate 
determination of the spots intensities.  

6. CONCLUSION 

In this paper an adaptive soft-switching scheme based on the Vector Median and a kernel-
based similarity function has been presented. The proposed filtering structure is superior to the 
commonly used standard filtering schemes and can be applied for the removal of impulsive noise in 
natural images. It is relatively fast and the proposed adaptive bandwidth estimator enables 
automatic filtering independent of noise intensity.  
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Fig. 2. Vector yi lies on the line connecting the vector xi and x(1) in the RGB space. 

Fig. 3. Comparison of the estimated, (dashed line) and optimal bandwidth, (solid line) as functions of the noise intensity 
expressed through σ for the LENA image. 

 

Fig. 4. Dependence of the PSNR on the h parameter of the L kernel, forp=1% - 5% in comparison with VMF, (LENA 
image). The dotted lines indicate the optimal value of PSNR achievable by the KVMF filter and the VMF. In the corner 
the magnified parts of the plots are presented. Besides, the dependence of the PSNR on the h parameter for the KVMF 

with the L kernel in comparison with the VMV for p ranging from 1% to 5% is presented. 
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TEST  P = 3%  VMF 

 
KVMF-L  BDF   DDF 

 
TEST  P=3%  VMF 

    
KVMF-L  BDF  DDF 

Fig. 5. Comparison of the filtering efficiency of the proposed filter with the Laplace kernel (KVMF-L) with the VMF, 
BDF and DDF methods. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 6. Efficiency of the proposed noise removal technique when applied to the images of microarrays:  
a) test images, b) filtered with the new method, c) output of the VMF. Note that the proposed method does not generate 

the artificial bloches visible in the VMF output. 
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