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3D MODELLING AND SEGMENTATION WITH DISCRETE CURVATURES 

Recent concepts of discrete curvatures are very important for Medical and Computer Aided Geometric 
Design applications. A first reason is the opportunity to handle a discretisation of a continuous object, with a free 
choice of the discretisation. A second and most important reason is the possibility to define second-order 
estimators for discrete objects in order to estimate local shapes and manipulate discrete objects. There is an 
increasing need to handle polyhedral objects and clouds of points for which only a discrete approach makes 
sense. These sets of points, once structured (in general meshed with simplexes for surfaces or volumes), can be 
analysed using these second-order estimators. After a general presentation of the problem, a first approach based 
on angular defect, is studied. Then, a local approximation approach (mostly by quadrics) is presented.  Different 
possible applications of these techniques are suggested, including the analysis of 2D or 3D images, decimation, 
segmentation... We finally emphasise different artefacts encountered in the discrete case. 

1. INTRODUCTION 

This paper offers a review of work on discrete curvatures for Computer Aided Geometric 
Design applications and a discussion about some ideas for further studies. We consider the discrete 
curvatures computed on a set of points and their relevance to continuous curvatures when the 
density of the points increases. First of all, it is interesting to recall that curvatures are fundamental 
tools for studying curves and surfaces. These geometrical invariants are basic elements of the 
theoretical study from a differential point of view (see for example [17]). The combination of the 
two principal curvatures makes it possible to obtain relevant information on classes of surfaces. The 
most encountered combinations are the Gaussian and mean curvatures, but other combinations 
exist. Their calculation is easy if the evaluation of derivatives is possible. Their use for shape 
estimation or optimisation, in spite of their effectiveness, quickly implies a high number of 
operations. Classically, one can try to switch from continuous to discrete values, much easier to 
compute and handle. This corresponds to the first interest of discrete curvatures. It is significant to 
note that within this framework, the selected discretisation is free. It can thus be adapted, subject to 
the definition of control criteria so as to obtain coherent results with continuous notions. But 
discrete curvatures have another more general and important application. There is an increasing 
need to handle polygonal or polyhedral objects and even clouds of points where only a discrete 
approach makes sense. These sets of points, once structured (ordered for the curves, and in general 
meshed with simplexes for surfaces or volumes), can be analysed using these second-order 
estimators. The problem has rather old origins, since one finds its first elements in the works of 
Gauss and Legendre ([16]). The first recent work on the subject was proposed by Alexandrov ([6]). 
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A general presentation of the problem is given in next section. The approach based on angular 
defect is studied in section 3. Then, the local approximation approach is presented in section 4. 
Section 5 finally emphasises different artefacts encountered in the discrete case, suggesting 
forthcoming studies to obtain reliable tools in any case. 

2. THE PROBLEM AND ITS CONSTRAINTS 

A discrete geometrical object is a polyhedral surface defined by a set of points (vertices) and a 
structure (neighbourhood, relationship between vertices). Information interpretable as a curvature of 
the surface must be found. Classically, the envelope of the cloud of points is triangulated to provide 
the structure giving the neighbourhood information.  Otherwise, only the k nearest neighbours of 
vertex P are computed, leading to poorer neighbourhood information. In both cases, wrong 
triangulations or neighbourhoods can be obtained for irregular discretisations of complex objects. 
By wrong triangulations, we mean either triangulations with self-intersections, triangulations with 
holes or inappropriate with respect to the initial object, inhomogeneous triangulations, ... Even if 
important works have been devoted to the improvement of triangulations, all the difficulties cannot 
be avoided without additional information on the object geometry.  

It is sometimes assumed that a normal vector N is known or can be easily computed, yielding 
the possibility of considering the neighbours of S as points of a surface z=h(x,y) expressed in the 
Darboux frame, or even in the global frame. Assuming that a normal vector is known before the 
local analysis or receiving a rather good one as a result from this analysis is an important issue. We 
are in favour of the second one, which is more general and avoids difficulties generally associated 
with irregular discretisations. In fact, curvature information, primarily of second order, is closely 
related to the determination of the normal vector which is of first order, and also related to the 
considerations of length, angle and area. If the Gaussian curvature K is intrinsic, mean curvature H 
can be determined only with the normal vector N, which emphasises the requirement for a global 
solution for the 3 objects (N, K, H), or for the approximated tangent plane which is closely related. 

One can assert a priori several requirements for discrete curvature computations, both on the 
method and on the results. Mainly, by decreasing order of importance 
− behaviour: the result must at least be invariant by isometries and be modified in a 

“reasonable” way by affine transformations, 
− convergence: the result must converge to the continuous curvatures when the number of 

points tends to infinity; roughly speaking, the  distance between points tends to 0, 
− local behaviour: it does not seem reasonable to use “long distance” information to find 

properties which are primarily analogous to derivatives,  
− independence of the position and structure of vertices: For a surface it should be a 

foreseeable modification during a change of triangulation, even if the latter influences the 
result.  

 
There are mainly two approaches for discrete curvature computations: 

− define the property by taking the limit in the continuous case and take the definition before 
reaching the limit in  discrete cases (see next section). 

− find a simpler geometrical object which satisfies certain conditions and use known 
properties for this object (see section 4).  
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3. THE ANGULAR DEFECT APPROACH 

3.1. BACKGROUND ON CURVATURES IN THE CONTINUOUS CASE 

Let X be a smooth surface in ℜ3 (and let (u,v) →X(u,v) be a local parameterisation of this 
surface). Let S be the Weingarten map of the tangent plane of X. k1 and k2, eigenvalues of S are 
called the principal curvatures of X at P and its eigenvectors are called the principal directions. The 
mean curvature, and Gaussian curvature are respectively defined by: H(P) = (k1 + k2)/2, K(P) = 
k1.k2 and characterise the local shape of X around P (convex, concave or saddle). However, 
Gaussian curvature can be defined in another way. Let N : X → ℜ3 be the smooth unit normal 
vector field on S, N : X → S2 (where S2 denotes the unit sphere of ℜ3) is called the Gauss map. 
Given U an open neighbourhood of P, let us define the quantity: 

 K (P) =
U→P
lim

Area(N (U))
Area(U)

  (1) 

Gauss Theorem states that K(P) so defined actually equals Gaussian curvature at P. 
In order to be compatible with continuous notions, it is straightforward that the discrete 

Gaussian curvature does not vanish only for the vertices of the polyhedral surface and that the 
discrete mean curvature does not vanish only along the edges of this surface (figure 1). 

Now in the case of discrete surfaces a suitable equivalent for these notions can also be 
defined. The following formula is called the “classical formula for Gaussian curvature” at vertex P: 

 K =
2π − α i∑

1
3

area(Ti )∑
 (2) 

where the numerator is the area of Gauss indicatrix and the 1/3 weighting is intuitively explained by 
sharing the area between the three vertices of a triangle. 

 

li 

Fig. 1. Vertex P and its neighbourhood 

3.2. MAIN RESULTS 

The results obtained by Borrelli and Boix ([9,10,11]) provide some of the most significant 
theoretical developments. They relate more precisely the notions of neighbourhood, angles, length, 
areas, Gaussian and mean curvature and provide a theoretical framework for the intuitive formula 
presented above. These works start from a study of the case of geodesic triangles, and the 
approximation of the chord length of a curve plotted on a smooth surface according to the 
corresponding arc length and reciprocally. For a triangle drawn on a smooth surface M, a formula 
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applying spherical trigonometry and expressing the difference between α (the angle of geodesics) 
and α’ (the angle of chords) is available. Assuming that the vertex is an umbilical point, this 
formula can be simplified and leads to an approximation of K called the corrected formula, which 
considers the length li of triangle edges opposed to the angles αi and the area of Ti (see figure 1): 

 K =
2π − α i∑

1
2

area(Ti ) −
1
8

cotan(α i )li
2∑∑

 (3) 

The mean curvature is classically attached to an edge e. In [9] and [2], the authors present the 
following classical formula for the integral mean curvature of  e: 

 H(e)=1/2 α.length(e) (4) 

where α(e) is the diedral angle between the neighbouring faces and l(e) denotes the length of the 
edge e. Bousquet ([12]) gives a definition for a mean curvature located at the vertices. Intuitively, 
considering that this curvature is evenly split among both vertices of e, one obtains the following 
approximate for the mean curvature at vertex P: 

 H=1/4 α.length(e) (5) 

In [26], Meyer, Desbrun and al. present a new derivation of these discrete curvature invariants 
using averaging Voronoï cells. However, as the Voronoï cell does not make sense in the presence of 
obtuse angles, they introduce a measure called “mixed area” based on Voronoï when possible and 
on barycenters otherwise. The area of such a mixed cell is denoted by AMixed. Then, the mean 
curvature normal operator is defined by: 

 H (P).N (P) =
1

2AMixed

(cotan(α i ) + cotan(β i )) (P − Pi )
i

∑  (6) 

where N(P) denotes the unit normal vector at P. The other notations are illustrated in figure 2. 
Therefore, this formula also provides a value for N(P). The Gaussian curvature operator is given by: 

 K (P) =
2π − α i∑

AMixed
 (7) 

Other formulae are also provided for principal curvatures and principal directions. However, 
convergence of these operators has still to be explored: their quality is only emphasised through a 
number of numerical tests followed by applications to the denoising and enhancement of meshes. 

 

Fig. 2. Voronoï area around vertex P, Amixed in grey 
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The main theoretical results about the convergence of discrete curvatures are presented in 
[19,14,11].  

In [20] and [15], the authors establish the convergence in measure of discrete curvatures 
towards continuous ones (i.e. by integrating on an open set), under the assumption that the triangles 
have a limited thickness, that is, do not tend to be flattened. This condition implies that the number 
of vertex neighbours is bounded. However, the question of the simple convergence of the formulae 
on angular defects is more delicate. Actually, simple convergence of the classical formula cannot be 
ensured. In [11], simple convergence of the corrected formula is studied in details. The convergence 
is mainly reached for valence 6 regular triangulations and for valence 4 regular vertex with the one-
ring neighbours aligned with the principal directions. Another problem in this frame is that the 
denominator of the corrected formula (called the module of the mesh at P) which can be interpreted 
as a fraction of area can be negative for triangles far from equilateral. This problem illustrates one 
of the difficulties encountered for very irregular triangulations (flat triangles, vertices with great 
valence). 

3.3. APPLICATIONS 

The main applications of discrete curvatures certainly concern fairing and enhancement of 
meshes and segmentation of data. The ideas exposed in the following can be applied to any type of 
data, particularly in the field of medical images which has been less investigated. 

The first important works to cite are those of Alboul and Van Damme ([2,3]) dealing with the 
quality of a given triangulation and methods to improve it. They first define an energy measure of 
the triangulation. A significant contribution of these works is to propose a vertex classification into 
three classes. As a matter of fact, according to the arrangement of the vertices, the Gaussian 
indicatrix is a possibly self-intersecting oriented loop. It is either a loop with trigonometrically or 
counter clockwise (or positive) orientation, or a loop with clockwise (or negative) orientation, or 
several loops with partly positive and negative orientations. It is thus possible to calculate a positive 
part D+ and a negative part D- of the angular defect, which correspond to the areas of the positive 
and negative loops on the unit sphere. The absolute discrete curvature, defined as D++D-, is the 
discrete analogue of |k1|+|k2| in the continuous case and D+ + D−∑  (called total absolute curvature) 
is used as energy criterion. The authors suggest a classification of polyhedron vertices into three 
classes called convex, saddle and “mixed” (figure 3). We prefer labelling the latter “fan” by analogy 
with the obtained shape. 

 

Fig. 3. Convex, saddle and fan vertices and their Gaussian indicatrix 

In [1,5] the authors recall that unlike 2D triangulations, any two 3D triangulations are not 
equivalent under the flip operation: self-intersections may occur during this process. Therefore, they 
extend their work to meshes containing self-intersections. As a result, new types of intermediate 
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vertices appear (called pinch vertices in [1]). In [4], starting from Alboul and Van Damme' works, 
the authors compare various energy functions for optimising a triangulation. In particular, they 
consider energy measures such as jump in normal derivatives or total absolute curvature, but also a 
function defined as a combination of both Gaussian and mean curvatures (4H2-2K) over all the 
vertices. In [19], the authors develop and implement the idea suggested in [2,3], using three energy 
criteria: norms 1 and 2 of mean curvature and norm 1 of absolute curvature.  

A discrete variational approach is proposed in [12,13] for improving the quality of B-spline 
surfaces. A variational method whose objective function is strain energy of the surface is 
introduced. Control points can be free of fixed. In order to avoid local minima, a simulated 
annealing algorithm is used. This approach obviously involves large computing times. To improve 
performances, a discrete objective function is introduced. It is computed on the control polyhedron 
(previously triangulated). It is defined starting from strain energy Eij in each pole by: 

 E = Eij
i , j
∑      with Eij = 4Hij

2 − 2Kij  (8) 

The Gaussian curvature is computed with the classical formula. The mean curvature on an 
edge is computed with (4). The value Hij is obtained by summing the contributions of all the 
incident edges at vertex Pij applying (5). The decrease of computing time is obviously very 
significant (in a ratio up to 50 to 60 percent on the studied examples). It is especially interesting to 
observe that the results with discrete and continuous optimisations are comparable in practice, 
although no precautions for convergence have been taken. 

A series of papers ([21,22,23,28]), explore fairing of meshes and define the Kobbelt umbrella 
operator. Actually, given X : → ℜ3  a parameterisation of a smooth surface, the so called “thin 
plate” energy of X is defined by: 

 εTP (X) =
∂ 2X
∂x 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∫

2

+ 2 ∂ 2X
∂x∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
∂ 2X
∂y 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

dxdy  (9) 

This expression is used in CAGD but without taking into account mechanical characteristics. 
[8] states that the minimisation of this energy can be characterised by Δ2X = 0  for the thin plate 
energy. In this context, the umbrella operator is a discretisation of the Laplacian operator. Given a 
vertex P whose first neighbour ring is a set of vertices (Pi)i∈ 1..n: 

 U (P) =
1
n

Pi − P
i=1

n

∑  (10) 

which leads to the following discretisation of the bilaplacian U 2 (P) =
1
n

U (Pi ) −U (P)
i=1

n

∑ . Starting from 

this discretisation, the initial energy minimisation problem can thus be reduced to linear systems 
(U2 (P)=0 for any vertex P of the mesh). The authors showed that these systems could be solved by 
an iterative solving scheme. The computation involves the 2-neighbour ring of a summit. 

In [32,33], a method of segmentation of a polyhedron using discrete invariants is developed. 
The formulas used result from [9]. The segmentation is first carried out by identifying the sharp 
edges of the polyhedron. They are detected by considerations on the values of the absolute and 
mean curvature. Each zone is then partitioned into sub zones of “homogeneous” curvature. In order 
to be completely disconnected from the shape of the triangles, the authors of [33] replace them by 
angular sectors with the same angles and a fixed arbitrary ray and adapt the formulae. These new 
values are called invariant of mean and Gaussian curvature. An invariant of absolute curvature is 
also defined. The obtained results show the validity of the approach. 
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In [25], an asymptotic analysis is proposed (the parameter of the discretisation h tends to 0) of 
the normal vector and Gaussian curvature estimates for three methods: paraboloid adjustment, 
angular defect (classical formula) and spherical image based on the ratio between a spherical image 
and the area of the triangles adjacent to P. The theoretical results state that these formulae are in 
O(h) for scattered data (with only O(1) for the classical formula and an additional assumption on 
the normal vector for the third method). For regular data, formulae become O(h2) approximations 
except for the classical formula which remains O(1). However, the authors show that the corrected 
formula gives rise to an at least O(h) approximation. Limits of this asymptotic study exist: it is of 
course useless when the data is a fixed grid that cannot be refined and in numerical applications, if h 
is not close enough from zero, it is not possible to use the equivalence results. 

4. THE LOCAL APPROXIMATION APPROACH 

In this case the idea is to consider that a vertex P and its neighbours are points on (or near) a 
continuous implicit surface, in general a quadric, but more complex case can be considered [14]. 
Once the surface has been fitted to this data, the local geometrical characteristics of the surface can 
be analytically computed and are considered as the discrete characteristics at vertex P. The 
computation of a mean curvature at P does not give rise to the difficulty exposed in the previous 
section. Moreover, another advantage is that the neighbours of a vertex do not require to be ordered: 
only the k nearest neighbours are specified. However, any artefact corresponding to discrete case 
cannot be handled, this is the main restriction that we discuss later. 

Sander and Zucker's paper ([27]) is one of the first works dealing with this approach: the 
considered data is a space enumeration matrix (matrix of voxels) of noisy points. The normal vector 
at each point is first determined by applying a gradient technique on the 3D image (first order 
approximation). A paraboloid is then locally fitted in the Darboux frame through a least squares 
technique taking into account the close points obtained during the initial estimate of the normal 
vector, and optionally their estimated normal vector. In this step lies actually the main difficulty of 
this approach that is, in finding a good estimate of this initial Darboux frame. 

The paraboloid provides both principal curvatures and their associated principal directions 
except for an umbilical point. However, this direct approach does not lead to coherent values among 
different neighbours. Therefore, for each vertex, the principal directions and the normal vector are 
iteratively improved by comparing the results with those of its neighbours while adjusting them for 
a best local agreement. 

This method is essentially a local one, but it is obviously influenced by the size of the 
considered neighbourhood. Depending on this size, the quadric either interpolates or approximates 
points. Assuming that the origin P of the frame is a point of the quadric, its characteristics are 
computed at the origin. Otherwise point P must be projected onto the quadric in order to find the 
point P* where the characteristics are computed. These results are applied in [7] to plot lines of 
curvature for a surface given by a cloud of scattered points. 

Douros and Buxton’s work ([18]) propose a second technique in order to get rid of the initial 
Darboux frame estimation. It consists in fitting the data with a general quadric determined by 10 
coefficients (ax2 + by2 + cz2 + 2d·xy +2e·xz + 2f·yz + 2g·x + 2h·y + 2i·z + j = 0). 

The first problem met in this approach is that the corresponding system is homogeneous 
implying that an additional condition must be added to avoid finding all the coefficients equal to 0. 
Fixing any coefficient to a non-zero value implies that only a linear system must be solved ([31]). 
Even if the best coefficient to fix is probably j, such a choice introduces an arbitrary decision (both 
on the chosen coefficient and on its value). Another solution lies in fixing a condition on the 2-norm 
of the solution vector ([18]). The problem must then be solved under constraints. 
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Moreover, like in previous approach, if vertex P is not a point on the quadric (due to the 
choice of the approximation method), it must be projected onto it (on a point P*) where the 
characteristics can be computed. This provides interesting results but requires additional works: 
further numerical analysis, choice of the best constraints and determination of an optimal number of 
neighbours. The main issue is that the method provides characteristics of a C2 surface and is thus 
completely inefficient to detect any of the artefacts specific to the discrete case. 

In [24], three methods are compared: a quadric fitting and two original methods. The principle 
of the first one, called circle method is very simple: starting from three points, whose middle point 
is the studied point, the circle going through these three points makes it possible to estimate the 
normal curvature in the direction of the tangent vector of the circle. With a certain number of well 
selected such triples, one can have a correct idea of the principal directions and principal curvatures 
applying Euler Theorem. The second method is more complex. Using locally cylindrical 
coordinates and assuming that one of the principal curvatures k is known, there exists an inversion 
locally transforming the surface into a cylinder. Mapping the cloud of points through this inversion 
corresponds to adjusting these points with a cylinder whose curvature h will provide the second 
principal curvature (k-h). This adjustment is a nonlinear process in which k can be considered as a 
variable rather than a datum. Both curvatures can thus be asymmetrically estimated. The second 
originality of this work is to compare these methods with a statistical approach for noisy data 
(initially on given surfaces): the standard deviations for the considered geometric invariants are 
plotted according to the variance of the introduced noise. The circle method is the fastest, but its 
limits are easily reached. The two other methods lead to close results. Although the proposed 
methods can be applied to any data, the data used in this paper are either on a regular grid 
simulating a laser scan with a constant z or on surfaces given by an equation z=f(x,y), which 
probably skews the results. Another effect of these assumptions on the data is to remove the main 
difficulty when looking for the osculatory paraboloid: the estimate of the Darboux trihedron in 
which the surface is locally described. As a matter of fact, with these assumptions the study can be 
achieved directly in the global frame. The normal vector deduced from this paraboloid is used to 
initialize the third method. The authors note that this estimate is probably insufficient to obtain 
good results. 

Similarly [29] numerically compares five different methods for local estimation of curvature 
geometric properties (both Gaussian and mean curvature), namely: paraboloid fitting, circular 
fitting, angular defect, the Wanatabe and Belyaev approach ([34]) and the Taubin ([30]) approach 
(these last two methods actually provide an estimate of the principal curvatures). All these 
algorithms are tested on meshes originating from NURBS surfaces and are compared with the 
analytically computed values of the Gaussian and mean curvatures of these surfaces. The best 
method for the estimation of the Gaussian curvature seems to be the angular defect approach 
whereas the paraboloid fitting provides the best estimates for the mean curvature. On the overall, 
the paraboloid fitting scheme seems to be the most stable method. However, these results only deal 
with NURBS surfaces, which are of course closer to paraboloid fitting. 

5. A NEED FOR FINER TOOLS 

The work of Alboul and Van Damme concerning the classification of the vertices according 
to discrete invariants is an interesting approach, allowing a first detection of singular vertices in 
meshes. Let us illustrate the interest of such a classification through the case of the well-known 
Schwarz lantern (actually a cylinder of radius R and height h). A possible triangulation of this 
surface is presented in figure 4 (left); let m be the number of parallels and n be the number of 
vertices on each parallel.  
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Fig. 4. A triangulation of the Schwarz lantern (left). Detail of a vertex and its Gauss map (right) 

 

Fig. 5. The Schwarz lantern 

All the vertices of such a triangulation are of type fan. Actually, one of the properties of this 
triangulation is that its area does not converge towards that of the cylinder unless n and m satisfy a 
very specific dependence relation.  However, another triangulation of the same set of vertices is that 
of figure 5 whose vertices are convex and whose area converge towards that of the cylinder. 

Unfortunately, other difficulties are encountered, contrary to what occurs for G2 surfaces: 
− At least six cases can be exhibited: convex, concave, saddle, convex-fan, concave-fan and 

saddle-fan. This second classification does not take into account the singular cases and the 
various limit cases to be considered for an exhaustive classification. We can in addition 
notice that it is possible to switch between neighbours from a convex vertex to a saddle 
vertex (figure 6, left). 

− A convex vertex or its symmetrical concave has the same spherical indicatrix. It is however 
significant to distinguish them, in so far as one can encounter two neighbouring vertices in 
the discretisation, one (fan) convex, the other (fan) concave without an intermediate case 
(figure 6, right). 

 

Fig. 6. Left: A convex vertex and its saddle neighbour. Right: A convex vertex and its concave-fan neighbour 
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− The mixed case initially suggested does not distinguish a convex-fan vertex from a saddle-
fan vertex.  However these two points are very different since the first has a supporting 
plane (and is obtained by addition of "reasonable" folds around a convex vertex) whereas the 
second does not have a supporting plane (and is obtained by addition of "reasonable" folds 
around a saddle vertex).   

− A convex-fan vertex can have a negative angular defect as proposed in figure 7 (left). 
Moreover by increasing the number of vertices the angular defect is not bounded from 
below, as suggested in figure 7 (right). We can note that such vertices do not fulfil the 
conditions imposed in [11]. 

 

Fig. 7. A convex-fan vertex with a negative angular defect (left) and with a large negative angular defect (right) 

These difficulties let us claim that the two approaches of discrete curvatures presented above 
do not completely lead to relevant estimators in any situation, even if they provide interesting 
results in many cases. The latter correspond to rather good discretisations with a good number of 
neighbours and relevant spatial distribution according to the radii of curvature. This is the reason 
why a local analysis of polyhedral surfaces is necessary. The first attempt is to provide warnings on 
the existence of “difficult” vertices and also define additional new indicators suitable for such 
vertices.  In this frame the main idea is to consider systematically convexity properties of edges, 
characterised by mixed products with adjacent edges.  

For that purpose, both polyhedrons are normalized so that they can be considered as spherical 
polygons: a standardised polyhedron associated with vertex P and its indicatrix. For a spherical 
polygon we note t(vi), the type of an edge vi, which is the sign of determinant |vi-1,vi,vi+1| (-1 for 
convex, +1 for concave). Two properties can directly be deduced from the definition: if ni is the unit 
normal associated with a face spanned by ai and ai+1, we have  

 )()()( 1+= iii atatnt  (11) 

∏∏∏ >== atatatnt 0)()()()( 2
+ i ii iii i 1  (12)  

The shape of the Gauss indicatrix, in the sense of the convexity-concavity of edges, is thus 
directly determined by the shape of polyhedron at vertex P. We deduce the types of normals by the 
rules convex-convex or concave-concave gives concave normal and convex-concave or concave-
convex gives convex normal. This implies also that the number of convex edges of an indicatrix is 
even. This intuitively corresponds to the fact that symmetrical vertices, obtained by exchanging of 
convex and concave, give the same indicatrix.  Roughly speaking, equivalent considerations let us 
claim that the number of types of vertices on the object is twice the number of types of vertices on 
the indicatrices. We can also easily deduce from these properties that a "pure" saddle vertex, with 
all convex normals, is only possible when its number of neighbours is even and that with four 
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neighbours it is not possible to have a concave indicatrix (which has 3 convex edges and 1 concave 
edge). 

To begin classification we define the shape of a vertex with k neighbours by a word of k 
letters, sequence of C (for a convex edge) and  K (for a concave edge) and we list all the shapes 
following the numbers of convex and concave edges, from convex (all C) to concave (all K).  In the 
case of a vertex with four neighbours we can list the shapes according to the number of convex 
edges of polyhedron/indicatrix: CCCC/KKKK convex, CCCK/KKCC convex-fan, CCKK/KCKC 
non-feasible (self-intersection), CKCK/CCCC saddle, CKKK/CKKC concave-fan, KKKK/KKKK 
concave.   

The case CCKK, with indicatrix KCKC corresponds to a pinch vertex [1] and is excluded. 
This can easily be deduced by studying the relative positions of normal vectors and faces.  The case 
of 5 neighbours can be obtained in the same way but, unfortunately, a more accurate study shows 
that there exist sub cases. This analysis requires additional investigations but is a first step towards a 
new vertex classification. 

6. CONCLUSION 

Among works dealing with discrete curvature, two approaches are mainly proposed: the use 
of angular defects and a local approximation. Even if the asymptotic behaviours are significant and 
must be taken into account, the reality of geometric modelling is a set of points, often without any 
possibility of refinement or improvement. Let us note, however, that the polyhedral approximation 
of a continuous surface makes it possible by subdivision to approach the asymptotic conditions. 
One must also take into account that structuring the set of vertices is not a simple problem. 
Delaunay triangulation is not necessarily the one providing the best representation of the shapes as 
noted in [19]. Finding the nearest neighbours of a vertex can also be a real challenge in extreme 
conditions. It appears significant under these conditions to be able to a priori analyse the scattered 
data to estimate the coherence of discrete calculations carried out. This is particularly accurate when 
an approximation by a quadric is used since this approach skips the potential artefacts associated 
with the discrete nature of the problem. Beyond these considerations and difficulties, many 
important applications in CAGD such as triangulation optimisation, segmentation, reverse 
engineering, image or surface analyses already provide interesting results. 
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