PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odwzorowanie kształtu obiektów trójwymiarowych z wykorzystaniem oświetlenia strukturalnego

Autorzy
Identyfikatory
Warianty tytułu
EN
Three-dimensional imaging of real objects by structured light
Języki publikacji
PL
Abstrakty
PL
Współcześnie w wielu dziedzinach, takich jak nauka, technika, medycyna, multimedia czy ochrona dziedzictwa kulturowego, coraz bardziej istotne staje się odwzorowanie powierzchni obiektów trójwymiarowych. Urządzenia do odwzorowania kształtu tych obiektów charakteryzują się zróżnicowaną budową i parametrami technicznymi w zależności od dziedziny i konkretnego zastosowania. W pracy przedstawiono podsumowanie dorobku autora w zakresie opracowania zintegrowanego systemu pomiaru kształtu powierzchni obiektów trójwymiarowych wraz z towarzyszącym oprogramowaniem realizującym automatycznie pełne przetwarzanie wyników do postaci końcowej w wybranych zastosowaniach medycznych, przemysłowych, multimedialnych i związanych z dokumentacją dziedzictwa kulturowego. W szczególności zaproponowano koncepcję optomechatronicznego czujnika 3D/4D, który łączy w sobie możliwości pomiaru kształtu powierzchni zarówno obiektów statycznych, jak i zmiennych w czasie (ożywionych). Została opracowana nowa metoda kalibracji czujnika niewymagająca warunków laboratoryjnych oraz specjalizowanego sprzętu. Opracowana procedura kalibracji może być przeprowadzana przez niewykwalifikowanego użytkownika w terenie bez zmniejszenia wartości parametrów użytkowych, takich jak niepewność pomiaru. Zaproponowane algorytmy (z których najważniejsze to automatyczne łączenie danych kierunkowych, segmentacja chmury punktów na grupy reprezentujące prymitywy geometryczne, triangulacja chmury punktów i jej teksturowanie) pozwalają na automatyczną realizację przetwarzania w przyszłych możliwych implementacjach optomechatronicznego czujnika 3D/4D. W końcowej części pracy przedstawionych jest pięć specjalizowanych wersji optomechatronicznego czujnika 3D/4D realizujących : - analizę lejkowatości klatki piersiowej na podstawie pomiaru 3D obiektów ruchomych, do zastosowań w medycynie; - śledzenie widocznych struktur anatomicznych na powierzchni ciała człowieka na podstawie pomiaru 4D obiektów ruchomych, do zastosowań w medycynie; - przyspieszenie pomiaru wielkości geometrycznych w przemyśle maszynowym; - tworzenie modelu 3D do zastosowań multimedialnych; - tworzenie dokumentacji wieczystej na podstawie pomiaru 3D obiektów statycznych, do zastosowań w dokumentacji dziedzictwa kulturowego.
EN
Nowadays, imaging of three-dimensional surface of objects in many areas like science, technology, medicine, multimedia or cultural heritage is more and more important. Devices realizing shape measurement of such objects are characterized by diverse design structures and technical parameters depending on exploited area and specific application. This work describes scientific achievements of the author in the field of integrated 3D shape measurement system development together with accompanying software realizing automated data processing for the final form in selected medical, industrial, multimedia and digital heritage applications. In particular, the concept of the opto-mechatronic 3D/4D sensor was proposed and it consists of possibility of 3D shape measurement of static objects as well as those varying in time (living ones). A new sensor calibration method that requires no specialized equipment and non laboratory conditions has been developed. The developed calibration procedure can be executed by a not technically skilled user and out of laboratory without any decrease of value of system parameters like measurement uncertainty. The proposed algorithms (among them the most important ones are automated view integration, segmentation of cloud of points into groups representing basic shapes, cloud of points triangulation and its texturing) allow to realize automated data processing in possible future implementations of the opto-mechatronic 3D/4D sensor. In the last part of the work, five specialized versions of opto-mechatronic 3D/4D sensor are described. They realize: - analysis of funnel chest on the basis of 3D shape measurement of moving objects in medicine application, - tracking of anatomical landmarks visible on human body surface on the basis of 4D measurement of moving objects in medicine application, - speeding up of measurement of geometrical features in machining industry, - imaging of 3D model in multimedia applications, - creation of eternal documentation on the basis of 3D shape measurement of static objects in application of culture heritage documentation.
Rocznik
Tom
Strony
3--117
Opis fizyczny
Bibliogr. 176 poz., rys., tab.
Twórcy
autor
  • Instytut Mikromechaniki i Fotoniki
Bibliografia
  • [1] Petrov M., Talapov A., Robertson T., Lebedev A., Zhilyaev A., Polonskiy L., Optical 3D digitizers: bringing life to the virtual world, Computer Graphics and Applications, 18(3), 28-37, 1998.
  • [2] Kozlowski L. J., Luo J., Tomasini A., Performance limits in visible and infrared imager sensors, IEDM Technical Digest. International, 867-870, 1999.
  • [3] Wong C.G., Martin A.J., Thomas P., An Architecture for Asynchronous FPGAs, IEEE International Conference on Field-Programmable Technology, 170-177, 2003.
  • [4] Blais F., Review of 20 years of range sensor development, J. Electron. Imaging, 13, 228-240,2004.
  • [5] D’Apuzzo N., Overview of 3D surface digitization technologies in Europe, Proc. SPIE 6056-05. 2006.
  • [6] de Silva C.W., Mechatronic Systems: Devices, Design, Control, Operation and Monitoring, CRC Press, 2007.
  • [7] Internetowa encyklopedia PWN, http://encyklopedia.pwn.pl, 2009.
  • [8] Van Gool L., Leibe B., Muller P., Vergauwen M., Weise T., 3D Challenges and a Non-In-Depth Overview of Recent Progress, 3-D Digital Imaging and Modeling, 118-132, 2007.
  • [9] Reiterer A., A semi-automatic image-based measurement system, ISPRS Commission V Symposium „Image Engineering and Vision Metrology”, 260-265, 2006.
  • [10] Lynd L., Larson E., Mature technology, RBAEF memo, Dartmouth College, 2003.
  • [11] Gureyev T.E., Paganin D.M.. Mvers G.R.. Nesterets Ya I Wilkin's V Phase-and-amplitude computer tomography, Appl. Phys. Lett., 89(3), 034102,2006.
  • [12] Bytes B., Functional MRI: an overview, Acta Neuropsychiatrica, 19(1), 64-65, 2007.
  • [13] Karachalios T., Roidis N., Papagelopoulos P.J., Karachalios G.G., The efficacy of school screen-ing for scoliosis, Orthopedics, 23(4), 386-391, 2000.
  • [14] Bankman I. (ed.), Handbook of Medical Image Processing and Analysis, Academic Press, wyd. 2, 2008.
  • [15] Ratajczyk E., Współrzędnościowa technika pomiarowa, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1994.
  • [16] Javidi B., Okano F. (eds.), Three-Dimensional Television, Video, and Display Technologies, Springer-Verlag, Berlin, 2002.
  • [17] Tangelder J.W.H., Veltkamp R.C., A survey of content based 3D shape retrieval methods, Multimedia Tools and Applications, 39(3), 441-471, 2007.
  • [18] Parry R., Recording the Museum, Routledge, London, 2007.
  • [19] Wojciechowski R., Walczak K., White M., Cellary W., Building Virtual and Augmented Reality museum exhibitions, Proceedings of the ninth international conference on 3D Web technology, 135-144, 2004.
  • [20] Baltsavias M., Gruen A., Van Gool L., Pateraki M., Recording, Modeling and Visualization of Cultural Heritage, Taylor & Francis, Londyn, 2006.
  • [21] Brajlih T., Valentan B., Drstevenser I., Balic J., Pogacar V., Testing the accuracy of ATOS[TM] 3d optical scanner measuring volumes, Annals of DAAAM & Proceedings, 2007.
  • [22] Materiały informacyjne firmy GOM, http://www.gom.com
  • [23] Hammett P.C., Frescoln K.D., Garcia-Guzman L., Changing automotive body measurement system paradigms with 3D non-contact measurement systems, UMTRI Technical Report: UMTRI-2003-43, 2003.
  • [24] Materiały informacyjne firmy Cognitens, http://www.cognitens.com
  • [25] Cyganek B., Siebert J.P., An Introduction to 3D Computer Vision Techniques and Algorithms, Wiley, Sussex, 2009.
  • [26] Ikeuchi K., Miyazaki D. (eds.), Digitally Archiving Cultural Objects, Springer, 2007.
  • [27] Shan J., Toth C.K. (eds.), Topographic Laser Ranging and Scanning-Principles and Processing, CRC Press, Boca Raton, 2009.
  • [28] Koschan A., Pollefeys M., Abidi M. (eds.), 3D Imaging for Safety and Security, Springer, Dordrecht, 2007.
  • [29] Fryer J., Mitchell H., Chandler J. (eds.), Applications of 3D Measurementfrom Images, Whittles Publishing, Dunbeath, 2007.
  • [30] Chen F., Brown G.M., Song M., Overview of 3-D shape measurement using optical methods Opt. Eng., 39, 10-22, 2000.
  • [31] Sitnik R., Zautomatyzowany system do pomiaru, analizy i eksportu obiektów trójwymiarowych do systemów inżynierskich i multimedialnych, rozprawa doktorska, Wydawnictwo Politechniki Warszawskiej, Warszawa, 2002.
  • [32] Besl P.J., Active Optical Range Imaging Sensors. Machine Vision and Applications, 1(2), 127-152, 1988.
  • [33] Materiały informacyjne firmy Polhemus, http://www.polhemus.com
  • [34] Keferstein C.P., Marxer M., Testing bench for laser triangulation sensors Sens. Rev., 18(3), 183-187, 1998.
  • [35] Materiały informacyjne firmy InSpeck, http://www.inspeck.com
  • [36] Materiały informacyjne firmy Minolta (VI-9i), http://www.thinglab.co.uk/pdf/digiscan_minolta_vi9i.pdf
  • [37] Besl P., McKay N., A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239-256, 1992.
  • [38] Materiały informacyjne firmy Diers Int., Optical stato-dyamical spine analysis and posture measurement system: formetric 3D/4D, http://www.diers.de, 2009.
  • [39] Moring I., Ailisto H., Koivunen V., Myllyla R., Active 3D vision system for automatic mod- el-based shape inspection Opt. Lasers Eng., 10, 3-4, 1989.
  • [40] Lange R., Seitz P., Solid-state Time-of-Flight Range Camera, IEEE J. Quantum Electronics, 37(3), 390-397, 2001.
  • [41] Frank M., Plaue M., Rapp H., Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras, Opt. Eng., 48, 013602, 2009.
  • [42] LuhmannT., Robson S., Kyle S., Harley I., Close Range Photogrammetry - Principles, Methods and Applications, Whittles Publishing, Dunbeath, 2006.
  • [43] Kraus K., Photogrammetry, vol. 1 - Fundamentals and Standard Processes, Dummler, Koln, 2000.
  • [44] Maas H.G., Automatic DEM generation by multi-image feature based matching, Int. Activities for Photogrammetry and Remote Sensing, 31 (B3), 484-489, 1996.
  • [45] Sitnik R., Kujawińska M., Woźnicki J., Digital fringe projection system for large-volume 360-deg shape measurement, Opt. Eng., 41, 443-449, 2002.
  • [46] Valkenburg R.J., Mclvor A.M., Accurate 3D measurement using a structured light system, Image and Vision Computing, 16(2), 99-110, 1998.
  • [47] Zhou F., Zhang G., Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations, Image and Vision Computing, 23(1), 59-67, 2005.
  • [48] Tsai M.J., Hung C.C., Development of a high-precision surface metrology system using structured light projection, Measurement, 38(3), 236-247, 2005.
  • [49] Srinivasan V., Liu H.C., Haliousa M., Automated Phase-measuring Profilometry of 3-D Diffuse Objects, Appl. Opt., 23(18), 3105-3108, 1984.
  • [50] Chen S.Y., Li Y.F., Zhang J., Realtime Structured Light Vision with the Principle of Unique Color Codes, IEEE International Conference on Robotics and Automation, 429-434, 2007.
  • [51] Schwider J., Burow R., Elssner K.E., Grzanna J., Spolaczyk R., Merkel K., Digital wave-front measuring interferometry: some systematic errors sources, Appl. Opt., 22, 3421-3432, 1983.
  • [52] Osten W., Nadeborn W., Andrae P., General hierarchical approach in absolute phase measurement, Proc. SPIE 2860, 1996.
  • [53] Kozłowski J., Zautomatyzowana metoda przeciwfazowej projekcji rastra i jej zastosowanie do badania wad postawy, rozprawa doktorska, Wydawnictwo Politechniki Warszawskiej, Warszawa, 2000.
  • [54] Zhang S., Huang P.S., High-resolution, Real-time 3-D Shape Measurement, Opt. Eng., 45(12), 123601, 2006.
  • [55] Zhang Li, Curless B., Seitz S.M., Rapid Shape Acquisition Using Color Structured Light And Multi-pass Dynamic Programming, in Proc. of 1st International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), 24-36, 2002.
  • [56] Ypsilos I.A., Hilton A., Rowe S., Video-rate Capture of Dynamic Face Shape and Appearance, in Proc. of 6th IEEE International Conference on Automatic Face and Gesture Recognition, 117-122,2004.
  • [57] Węgiel M., Kujawińska M., Fast 3D shape measurement based on color structure light projection, Proc. SPIE 5146, 74-87, 2003.
  • [58] Pawłowski M., Zautomatyzowany system do pomiaru położenia i kształtu zmiennych w czasie obiektów trójwymiarowych, rozprawa doktorska, Wydawnictwo Politechniki Warszawskiej, Warszawa, 2002.
  • [59] Zhang S., Yau S.-T., High-resolution, Real-time 3D Absolute Coordinate Measurement Based on a Phase-shifting Method, Opt. Express, 14(7), 2644-2649, 2006.
  • [60] Bowyer K.W., Chang K., Flynn P., A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition, Computer Vision and Image Understanding, 101(1), 1-15, 2006.
  • [61] Wang J., Oliveira M.M., Zhang H., Kaufman A.E., Reconstructing regular meshes from points, The Visual Computer, 24(5), 361-371, 2008.
  • [62] Vieira M., Shimada K., Surface Mesh Segmentation and Smooth Surface Extraction through Region Growing, Computer Aided Geometric Design, 22(8), 771-792, 2005.
  • [63] de Berg M., van Kreveld M., Overmars M., Schwarzkopf O., Computational Geometry Algorithms and Application, Springer-Verlag, 9,188-199, 2000.
  • [64] Curless B., Levoy M., A Volumetric Methodfor Building Complex Models from Range Images, SIGGRAPH’96 Conference, New Orleans, 303-312, 1996.
  • [65] Venkataraman A., Schock H.J., Mercer C.R., Data merging for high-resolution surface profiling, Proc. SPIE 2355, 198-207, 1994.
  • [66] Karbacher S., Ritter D., Häusler G., SLIM 3D -Software for reverse engineering in Angewandte Optik, Annual Report, Erlangen, 80, 1997.
  • [67] Turk G., Levoy M., Zippered polygon meshes from range images, SIGGRAPH’94, 311-318,1994.
  • [68] Benjemaa R., Schmitt F., Fast global registration of 3d sampled surfaces using a multi-z-buffer technique, Proc. Int. Conf. On Recent Advances in 3-D Digital Imaging and Modeling, 113-120, 1997.
  • [69] Bergevin R., Soucy M., Gagnon H., Laurendeau D., Towards a general multi-view registration technique, IEEE Trans. Patt. Anal. Machine Intell., 18(5), 540-547, 1996.
  • [70] Blais G., Levine M.D., Registering multiview range data to create 3d computer objects, IEEE Trans. Patt. Anal. Machine Intell., 17(8), 820-824, 1995.
  • [71] Chen Y., Medioni G., Object modeling by registration of multiple range images, Image and Vision Computing, 10(3), 145-155, 1992.
  • [72] Eggert D.W., Fitzgibbon A.W., Fisher R.B., Simultaneous registration of multiple range views for use in reverse engineering, Technical Report 804, Dept, of Artificial Intelligence, University of Edinburgh, 1996.
  • [73] Jin H., Duchamp T., Hoppe H., McDonald J.A., Pulli K., Stuetzle W., Surface reconstruction from misregistered data, Proc. SPIE 2573, 324-328, 1995.
  • [74] Masuda T., Sakaue K., Yokoya N., Registration and integration of multiple range images for 3-d models construction, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 879-883, 1996.
  • [75] Neugebauer P., Geometrical cloning of 3d objects via simultaneous registration of multiple range images, Proc. Int. Conf. on Shape Modeling and Application, 130-139, 1997.
  • [76] Pulli K., Multiview registration for large data sets, Second Int. Conf. on 3D Digital Imaging and Modeling, 160-168, 1999.
  • [77] Neugebauer P. J., Reconstruction ofReal- World Objects via Simultaneous Registration and Robust Combination of Multiple Range Images, Int’l J. Shape Modeling, 3(1&2), 71-90, 1997.
  • [78] Bergevin R., Soucy M., Gagnon H., Laurendeau D., To-wards a general multi-view registration technique, IEEE Trans, on Pattern Analysis and Machine Intelligence, 18(5), 540-547, 1996.
  • [79] Benjemaa R., Schmitt F., Registering range views of complex objects Proceedings of the 4th European Conferences on Rapid Prototyping, Paris, 1995.
  • [80] Zhang Z., Iterative point matching for registration of free-form curves and surfaces, Int’l J. Computer Vision, 13(2), 119-152, 1994.
  • [81] Nishino K., Ikeuchi K., Robust Simultaneous Registration of Multiple Range Images, Proc. Fifth Asian Conf. Computer Vision, 454-461, 2002.
  • [82] Johnson A., Spin-Images: A Representation for 3-D Surface Matching, PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, 1997.
  • [83] Johnson A., Hebert M., Surface registration by matching oriented points, Proc. Int. Conf. On Recent Advances in 3-D Digital Imaging and Modeling, 121-128, 1997.
  • [84] V’arady T., Facello M.A., Ter'ek Z., Automatic Extraction of Surface Structures in Digital Shape Reconstruction, Computer-Aided Design, 39(5), 379-388, 2007.
  • [85] Heckbert P.S., Garland M., Survey of Polygonal Surface Simplification Algorithms, Multiresolution Surface Modeling Course, SIGGRAPH’97, 1997.
  • [86] Lee A., Sweldens W., Schroeder P., Cowsar L., Dobkin D., MAPS: multiresolution adaptive parameterization of surfaces, Comput. Graphics, Proc., SIGGRAPH’98, 95-104, 1998.
  • [87] Delaunay B., Sur la sphčre vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7, 793-800, 1934.
  • [88] Cheng S.W., Dey T.K., Delaunay Meshing of Surfaces and Volumes: Algorithms and Mathematical Analysis, 2000.
  • [89] Lattuada R., Raper J., Applications of 3D Delaunay triangulation algorithms in geoscientific modeling, Geometry In Action, 1999
  • [90] Guibas L.J., Knuth D.E., Sharir M., Randomized incremental construction of Delaunay and Voronoy diagrams, Automata, Languages and Programming, LNCS N.443, 414-431, 1990.
  • [91] Dwyer R. A., A faster divide and conquer algorithm for construction Delaunay triangulations, Algorithmica, 2, 137-151, 1987.
  • [92] Bemardini F., Mittleman J., Rushmeier H., Silva C., Taubin G., The Ball-Pivoting Algorithm for Surface Reconstruction, IEEE Transactions on Visualization and Computer Graphics, 5(4), 349-359, 1999.
  • [93] Medeiros E., Velho L., Lopes H., Restricted BPA, Applying Ball - Pivoting on the Plane, XVII Brasilian Symposium on Computer Graphics and Image Processing (SIBGRAPH), 372-379, 2004.
  • [94] Sitnik R., Załuski W., Kujawińska M., True 3D-object optical measurement and data conversion system for medical, CAD/CAM/CAE and art application, International Conference on Computer Vision and Graphics, ICCVG, Zakopane, September 25-29, 647-656, 2002.
  • [95] Alhir S.S., UML. Wprowadzenie, HELION, 2003.
  • [96] Sladek J., Sitnik R., Kupiec M., Błaszczyk P.M., Hybrid contact-optical coordinate measuring system accuracy analysis, Metrology & Measurement Systems, w trakcie recenzji.
  • [97] Glinkowski W., Sitnik R., Mąkosa K., Wasilewska M., Powierża M., Załuski W., Pawlica S., Glinkowska B., Marasek K., Górecki A., Sistema de telediagnostico postural acompanhado de telerreabilitacao via Internet - resultados preliminares do projeto polones, EDITORA UFMG, 465-474, 2006.
  • [98] Glinkowski W., Sitnik R., Bolewicki P., Michoński J., Witkowski M., Paśko S., Karaszewski M., Glinkowska B., Górecki A., Automated human body 3D measurement system supporting screening for posture and body shape evaluation, Int. J. CARS 4, S332-S333, 2009.
  • [99] Sitnik R., 4D measurement by single frame structured light method, Appl. Opt., 48(18), 3344-3354, 2009.
  • [100] Takeda M., Spatial-carrier Fringe Pattern Analysis and Its Applications to Precision Interferometry and Profilometry: An Overview, Industrial Metrology, 1, 79-99, 1990.
  • [101] Sitnik R., Multi-STFT for adaptive SCPS phase determination, Opto-Electronics Review, 17(4), 325-329, 2009.
  • [102] Pirga M., Kozłowska A., Kujawińska M., Generalization of Scaling Problem For The Automatic Moire and Fringe Projection Shape Measurement System, Physical Research, 19, 1993.
  • [103] Li Y.F., Chen S.Y., Automatic recalibration of a structured light vision system, IEEE Trans. Rob. Autom., 19, 259-268, 2003.
  • [104] Breuckmann B., Halbauer F., Klaas E., Kube M., 3D-metroIogies for industrial applications, Proc. SPIE, 3102, 20-29, 1997.
  • [105] WilczkowiakM., Sturm P., Boyer E., Using geometric constraints through parallelepipeds for calibration and 3D modeling, IEEE Trans. Pattern Anal. Mach. Intell., 27, 194-207, 2005.
  • [106] Zhang B., Li Y., Dynamic calibration of the relative pose and error analysis in a structured light system, J. Opt. Soc. Am., A 25(3), 612-622, 2008.
  • [107] Huang C., Chen C., Chung P., An improved algorithm for two-image camera self-calibration and Euclidean structure recovery using absolute quadric Pattern Recogn. 37, 1713-1722, 2004.
  • [108] Kowarschik R., Kühmstedt P., Gerber J., Schreiber W., Notni G., Adaptive optical three-di- mensionai measurement with structured light, Opt. Eng., 39, 150-158, 2000.
  • [109] Sansoni G., Carocci M., Rodella R., Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors, Appl. Opt., 38(31), 6565-6573, 1999.
  • [110] Sansoni G., Carocci M., Rodella R., Calibration and Performance Evaluation of a 3-D Imaging Sensor Based on the Projection of Structured Light, IEEE Trans, on Instr. and Meas., 49(3), 628-636, 2000.
  • [111] PatorskiK., Kujawińska M., Handbook of the Moiré Fringe Technique, Elsevier Science, 1993.
  • [112] Sprawozdanie z Grantu Własnego MNiSW nr 3 TlOC 010 29 Optonumeryczny system do pomiaru elementów geometrycznych zintegrowany z Współrzędnościową Maszyną Pomiarową, Warszawa, 2007.
  • [113] Kujawińska M., Sitnik R., Measurement and data processing uncertainty issues in optical, full-field measurement techniques, Proc. SPIE 5191, 102-112, 2003.
  • [114] Ray E.T., XML. Wprowadzenie, wyd. II, HELION, 2004.
  • [115] Pratt W.K., Digital Image Processing, John Willey & Sons, NY, 2001.
  • [116] Sitnik R., New method of structure light measurement system calibration based on adaptive and effective evaluation of 3D-phase distribution, Proc. SPIE 5856,109-117, 2005.
  • [117] Schneider P.J., Eberly D.H., Geometric Tools for Computer Graphics, Morgan Kaufmann Publishers, 2003.
  • [118] ISO 10360-2 2001 Geometrical Product Specifications (GPS) Acceptance and reverification tests for coordinate measuring machines (CMM) - Part 2: CMMs used for measuring size standard
  • [119] VDI/VDE 2617-6 1997 Genauigkeit von Koordinatenmeßgeräten - Kenngrößen und deren Prüfung - Koordinatenmeßgeräte mit optischer Antastung - Grundlagen
  • [120] Duffy V.G. (ed.), Digital Human Modelling, Springer, Berlin 2009.
  • [121] Pirga M., Kujawińska M., Two-directional Spatial-carrier Phase Shifting Method for Analysis of Crossed and Closed Fringe Pattern, Opt. Eng., 34, 2459-2466, 1995.
  • [122] Zhong J., Weng J., Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry, Appl. Opt., 43(26), 4993-4998, 2004.
  • [123] Srinivasan V., Liu H.C., Haliousa M., Automated Phase-measuring Profilometry of 3-D Diffuse Objects, Appl. Opt., 23(18), 3105-3108, 1984.
  • [124] Shinozaki M., Kusanagi M., Umeda K., Godin G., Rioux M., Correction of color information of a 3D model using a range intensity image, Computer Vision and Image Understanding, 229-236, 2005.
  • [125] Sitnik R., Kujawińska M., Załuski W., 3DMADMAC system: optical 3D shape acquisition and processing path for VR applications, Proc. SPIE 5857, 106-117, 2005.
  • [126] Buss S.R., 3D Computer Graphics: A Mathematical Introduction with OoenGL. Cambridge University Press, 2003.
  • [127] Malacara D., Color Vision and Colorimetry: Theory and Applications, SPIE Publications, 2002.
  • [128] Ryer A., Light measurement handbook, International Light Inc., 1998.
  • [129] Sitnik R., Witkowski M., Locating and tracing of anatomical landmarks based on full-field four-dimensional measurement of human body surface, Journal of Biomedical Optics, 13(4), 044039, 2008.
  • [130] Shirley P., Ashikhmin M., Gleicher M., Marschner S., Reinhard E., Sung K., Thompson W., Willemsen P., Fundamentals of Computer Graphics, 2nd edition, A K Peters, Ltd., 2005.
  • [131] Raja V., Fernandes K.J. (eds.), Reverse Engineering: An Industrial Perspective, Springer, 2007.
  • [132] Sitnik R., Karaszewski M., Optimized point cloud triangulation for 3D scanning systems, Machine Graphics & Vision International Journal, 17(4), 349-371, 2008.
  • [133] Foley J.D., van Dam A., Feiner S.K., Hughes J.F., Phillips R.L., Introduction to computer graphics, Addison-Vesley, 1994.
  • [134] Liu L., Gene Y., Wolberg G., Zokai S., Multiview Geometry for Texture Mapping 2D Images Onto 3D Range Data, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2293-2300. 2006.
  • [135] Sitnik R., Rejestracja kształtu i barwy przedmiotów 3D w zastosowaniach VR, materiały II edycji konferencji „Zapis obrazu, obraz zapisu”, 1-19, 2007.
  • [136] Williams A.M., Crabbe D.C.G., Pectus deformities of the anterior chest wall, Paed. Resp., 4, 237-242, 2003.
  • [137] Chung C.S., N.C., Myrianthopoulos Analysis of epidemiologic factors in congenital malformations, Birth Defects Orig Artie Ser, 11(10), 1-22, 1975.
  • [138] Daunt S.W., Cohen J.H., Miller S.F., Age-related normal ranges for the Haller index in children, Pediatr. Radiol., 34, 326-330, 2004.
  • [139] Haller J.A., Kramer S.S., Lietman S.A., Use of CT scans in selection of patients for pectus excavatum surgery: a preliminary report, J. Pediatr. Surg., 22(10), 904-906, 1987.
  • [140] Haller J. A., Shermeta D.W., Tepas J.J., et al., Correction of pectus excavatum without prosthe- ses or splints: objective measurement of severity and management of asymmetrical deformities, Ann Thorac Surg 26, 73-79, 1978.
  • [141] Glinkowski W., Sitnik R., Witkowski M., Kocoń H., Bolewicki P., Górecki A., The method of pectus excavatum measurement based on structured light technique, Journal of Biomedical Optics, 14(4), 044041, 2009.
  • [142] Plackett R.L., Karl Pearson and the Chi-Squared Test, International Statistical Review, 51(1), 59-72, 1983.
  • [143] Ehara Y., Fujimoto H., Miyazaki S., Tanaka S., Yamamoto S., Comparison of the performance of 3D camera systems, Gait & Posture, 3(3), 166-169, 1995.
  • [144] Razdan A., Bae M., Curvature Estimation Scheme for Triangle Meshes Using Biquadratic Bezier Patches, Computer Aided Design, 37(14), 1481-1491, 2005.
  • [145] Douros I., Buxton B., Three-dimensional Surface Curvature Estimation Using Quadric Surface Patches, Proc. Scanning 2002, Paris, 2002.
  • [146] Rogers D.F., Adams J.A., Mathematical Elements for Computer Graphics, 2nd edition, McGraw-Hill Science/Engineering/Math, 1989.
  • [147] Witkowski M., Sitnik R., Rapp W., Haex B., Kowalski M., Mooshake S., Surface shape parameters and analysis of data captured with use of 4D surface scanners. Proc. SPIE, 6848, 684815, 2008.
  • [148] Raport z projektu UE 6PR AURORA, Contact-free Dynamical Volumetric Measurements of Lower Body with Functional Clinical and Diagnostic Capacity, 2006.
  • [149] Hetzer C., Rapp W., Witkowski M., Sitnik R., Haex B., Bogeart N., Vander Sloten J., Horstmann T., Evaluation of newly developed algorithms for calculating anatomical landmarks from surface contours on the lower extremities, Journal of Biomechanics, 39(1), 575, 2006.
  • [150] H.G. David Is Contact Measurement Out of Touch?, Quality Digest Magazine, 2003.
  • [151] Sładek J., Sitnik R., Kupiec M., New concept of Optomechanical Measurement Machine, Proc. 5th Int. Conf. on Measurement, Smolenice, Slovakia, 2005.
  • [152] Sitnik R., Sładek J., Kupiec M., Błaszczyk P.M., Kujawińska M., New concept offast hybrid contact and no-contact measurement for automotive industry, Proc. SPIE 6198, 619803.1-619803.8, 2006.
  • [153] Sitnik R., Błaszczyk P., Segmentation of unsorted cloud of point data from full field optical measurement for metrological validation, Computer Aided Geometric Design, w trakcie recenzji.
  • [154] Sładek J., Modeling and quality assessment of machines and dimensial maeasurments Scientific papers of Krakow University of Technology, Mechanics, 87, Kraków, 2001.
  • [155] EA-4/02 Expression of the Uncertainty of Measurement in Calibration, December 1999.
  • [156] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. International Vocabulary of Basic and General Terms in Metrology, Second Edition 1993. International Organization for Standardization, Geneva.
  • [157] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization, Geneva. ISBN 92-67-10188-9, First Edition 1993, corrected and reprinted 1995.
  • [158] Materiały informacyjne firmy Wilcox Associates Inc.: http://www.pcdmis.com
  • [159] Sitnik R., Załuski W., 3DMADMAC - 3D Digitalization of European Cultural Heritage, OPERA2015 Symposium on Photonics Technologies for the 7th Framework Programme, 502-505, 2008.
  • [160] Sitnik R., Załuski W., Bolewicki P., Kowalski M., Measurements for virtual museum: the Kórnik Castle, Elektronika, 8-9, 299-302, 2004.
  • [161] Kujawińska M., Sitnik R., Pawłowski M., Garbat P., Węgiel M., 3D object data acquisition and processing for virtual reality applications, Opto-Electronics Review, 11(3), 181-192, 2003.
  • [162] Sitnik R., Kujawińska M., From reality to virtual reality: 3D object imaging techniques and algorithms, Proc. SPIE 5146, 54-61, 2003.
  • [163] Materiały informacyjne Muzeum Zamek w Kórniku, http://www.bkpan.poznan.pl/muzeum/index.html
  • [164] Materiały informacyjne Muzeum Anny i Jarosława Iwaszkiewiczów w Stawisku, http://www. stawisko.pl/
  • [165] Materiały informacyjne Muzeum Pałac w Wilanowie, http://www.wilanow-palac.art.pl/
  • [166] Materiały informacyjne Muzeum Wojska Polskiego w Warszawie, http://www.muzeumwp.pl/
  • [167] Materiały informacyjne Muzeum Narodowego Rolnictwa i Przemysłu Rolno-Spożywczego w Szreniawie, http://www.muzeum-szreniawa.pl/
  • [168] Sitnik R., Garbat P., Wierzchowski A., Pawłowski M., Witkowski M., Załuski W., Paśko S., Creation of digital content components on the iTVP Platform, 11 th International Workshop on Systems, Signal and Image Processing, 461-464, 2004.
  • [169] Sitnik R., Paśko S., Karaszewski M., Witkowski M., Internet virtual studio: low-cost augmented reality system for WebTV, Proc. SPIE 6804, 68040E, 2008.
  • [170] Materiały informacyjne grupy badawczej OGX, http://ogx.mchtr.pw.edu.pl
  • [171] Materiały informacyjne firmy ZCorporation, http:// www.zcorp.com
  • [172] Folga-Januszewska D. (ed.), Konserwacja zapobiegawcza w muzeach, Krajowy Ośrodek Badań i Dokumentacji Zabytków, Warszawa, 2007.
  • [173] Modzelewska E., Sitnik R., Odwzorowanie struktury powierzchni obiektu zabytkowego za pomocą skanu 3D, Cyfrowe spotkania z zabytkami 1 - „Nowoczesne metody gromadzenia i udostępniania wiedzy o zabytkach”, Wyd. Via Nova, 147-156, 2008.
  • [174] Bunsch E., Sitnik R., W stronę obiektywnej dokumentacji dzieła sztuki - praktyczne wykorzystanie skanerów z oświetleniem strukturalnym, Cyfrowe spotkania z zabytkami 1 - Nowoczesne metody gromadzenia i udostępniania wiedzy o zabytkach, Wyd. Via Nova, 157-162,2008.
  • [175] Kolendo J., Żelazowski J., Teksty i pomniki. Zarys epigrafiki łacińskiej okresu Cesarstwa Rzymskiego, Ośrodek Badań Archeologicznych - Novae, 2003.
  • [176] Materiały informacyjne firmy Smarttech, http://www.smarttech.pl
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0011-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.