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AN APPLICATION OF ROBUST FILTERS IN ECG SIGNAL PROCESSING 

Robust filtering is a very promising area in application of biomedical signal processing. Signals are 
usually recorded with noise, which has various characteristics of baseline wander to very impulsive nature. The 
robust technique has been recently proposed as the tool to eliminate outliers in data samples. The main purpose 
of this paper is to present mean-median filters in application of ECG signal processing. The presented filter is 
evaluated in the presence of real muscle noise and simulated impulsive noise as a Gaussian-Laplace mixture. In 
order to suppress a noise with the best possible means, the special expression is proposed. The measure of 
distortions, which are introduced to a signal after operation of filtering, is estimated using the normalized mean 
square error. This factor is used to compare a quality of considered filters. Experimental results show improved 
performance according to the reference filters. 

1. INTRODUCTION 

Linear filtering technique is commonly used in various scopes of digital signal 
processing. The main assumption of this technique is that a noise is characterised by 
Gaussian distribution. Such approach is justified by the Central Limit Theory. Moreover, 
the analytical form of solution is often obtained [11]. But this assumption can result with too 
optimistic conclusions. Non-gaussianity often results in significant quality degradation for 
systems optimised under the Gaussian assumption [11]. Such systems are very sensitive to the 
presence of outliers. For example the mean filter is an optimal filter for Gaussian noise in the 
sense of a mean square error, but performs poorly in the noise which is described by heavy-tails 
distributions. These reasons motivate to investigate non-linear filtering alternatives [3]. The 
development of non-linear filtering techniques in the recent years brings interesting results. The 
main effort of investigations is placed on removing outliers from a signal without destroying 
fine details of a signal. Non-linear filters are characterized by their robustness to an impulsive 
noise. One of the most interesting groups of filters is M-filters. Such filters are sliding window 
filters and the output of the window is estimated as the maximum likelihood estimation of 
location. The fundamental M-estimators are the sample mean, the sample median and the 
sample myriad [2, 6]. 

Biomedical signal processing requires the use of filters to shape the frequency content 
of the signal. Signal smoothing, enhancing or shape preserving, in interval of the impulsive 
noise appearance, means that the only alternative for these applications is robust methods 
implementation. Linear filters tend to blur sharp edges, destroy lines and other fine image or 
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signal details in the presence of a heavy tailed noise. On the other hand, there is an 
important class of smoothing applications that require careful treatment and preservation of 
signal edges [3]. These requirements are satisfied by robust filtering methods. 

The biomedical signals are recorded in noisy environment. There are many factors 
which lead to occurrence of disturbances. The sources of noises are various kinds of 
operating devices in the human environment, and also a man is a source of the noise. In the 
biomedical systems the first step of the processing of biomedical signals is very important. 
All later activities depend on the quality of the initial step [8]. There exists many different 
biomedical signals, but for the purpose of this work the electrocardiogram (ECG signal) was 
chosen. The ECG signal is almost always disturbed by noise. Examples of noises are: 50 Hz 
power line interference, the baseline wander, the muscle noise, the motion artefacts. In fact, most 
types of noises are not stationary, it means, that the noise power measured by the noise variance 
features some variability. The muscle disturbances contaminations in ECG signals distort low-
amplitude ECG wave components and hence lower the accuracy of computer-aided 
measurements of various morphological characteristics. This situation appears in applications 
such as an exercise ECG or an ambulatory ECG, where computer-aided measurement and 
interpretation are very often used [4]. The muscle noise is the most difficult noise that need to be 
suppressed, because the spectra of EMG signal overlap for a wide range of frequency the 
spectrum of ECG signal [12]. A white Gaussian noise is usually used to model EMG signal, but 
the muscle noise shows frequently an impulsive nature, and it means that the Gaussian model 
may disappoint. Another model which very likely describes some cases of the muscle noise 
is an application of the symmetric α-stable distribution [9].  

The main aim of this paper is to present the mean-median robust filter (MEM filter) 
which effectively suppresses a muscle noise and an impulsive type of noise. The second aim 
is to check the possibility of using the Gaussian and Laplacian mixture noise to model a 
muscle noise. The paper is organized in the following way. In the next section the mean-
median filter in application of ECG signal processing is presented. Finally, in Section III, 
the method of evaluation and some results are presented. Final conclusions are presented in 
the last section. The reference filters are the moving averaging filter, the myriad filter and 
the median one.  

2. THE ROBUST FILTER 

The aim of robust statistics is to develop solution of problem of finding the best fit of a 
model f={f0, f1, …, fN-1} to a set of data measurements, g={g0, g1, …, gN-1}, in cases where 
the data differs statistically from the model assumptions. In fitting a model, the aim is to 
find the values of f that minimize the size of the residual error (g-f) [10]. This minimisation 
can be written as: 

 ( )∑ − σρ ),(min fg , (1) 

where σ  is a scale parameter, and ρ(⋅) is an estimator function, also known as the cost 
function. The cost function plays the fundamental role in the robust filtering. The robustness 

 114 



COMPUTER MODELLING 

of an estimator refers to its tolerance to outliers, i.e., insensitivity to deviations from the 
assumed statistical model [10]. 

Let us consider the desired signal s(n) disturbed with noise components v(n). Then the 
input signal x(n) can be written as: 

 )()()( nvnsnx += . (2) 

The main aim of filtering is to estimate the signal samples s(n) by using the noisy 
samples x(n). The class of M-filters is the running window filter outputting the M-estimator 
(maximum likelihood estimator) of location of the elements in the moving window. Assume 
that the measurement errors are distributed according to no Gaussian distribution. The 
maximum-likelihood formula for the estimated parameter  which predicts value of s(n), 
can be written as: 

β̂
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where the ρ function is the negative logarithm of the probability density 
)(log)( zfz −=ρ  of the additive noise within the samples and it is monotonic no decreasing 

on [0,∞) [2]. The properties of M-estimators depend on properties of the cost function. 
Taking the logarithm of (3), we obtain an expression that need to be minimized: 
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denotes the value of β that minimizes the expression in parenthesis 

[2,6] and the )(zρ  is a function of a single variable ( )β−≡ ixz . Let the function )(zψ is the 
derivative of )(zρ : 

 
dz

zdz )()( ρψ = . (5) 

The )(zψ  (called the influence function) function is some odd, continuous, and sign-
preserving function [7,10].  

The special cases of M-filters are the mean filter and the median one. When errors in 
measurements are normally distributed, i.e.,  

 Prob{xi −β}~exp[− (xi −β)], (6) 

Then optimal estimator has the form  and 25.0)( zz ⋅=ρ zz =)(ψ . The last dependences 
lead to the sample mean filter which is optimised under the normal distributed errors and 
reduced to the standard least-squares estimation. When errors in measurements are 
distributed as a double or two-sided exponential, i.e., 
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 Prob{xi −β}~exp[−|xi −β |], (7) 

then zz =)(ρ  and  )sgn()( zz =ψ . This expression denotes the median filter. Properties 
of the median filter are described in [7,13]. 

Robust estimation is the means to solve the problem when the distribution function is 
in fact not precisely known. In this case, an adequate approach is to assume, that the density 
function is a member of some set, or some family of parametric families, and to choose the 
best estimator for the least factorable member of that set [3]. Using these facts, let us 
assume that the noise probability distribution is scaled version of a known member of the Pε 
family of ε - contaminated normal distributions proposed by Huber [5]: 

 ( ){ SHHP }∈+Φ−= :1 εεε , (8) 

where: Φ is the standard normal distribution, S is the set of all probability distributions 
symmetric with respect to the origin (i.e., such that H(-x) = 1 – H(x)), and ε ∈ [0,1] is the 
known fraction of “contamination”. The presence of outliers in a nominally normal sample 
can be modelled by a distribution H with tails that are heavier than that of normal 
distribution. Now let Φ denotes Gaussian distribution ( )2,0 GN σ  with variance  and H is 
Laplacian (or double-exponential) 

2
Gσ

( )2,0 LL σ  with variance [1,3]. The most commonly 
used form in modelling outliers for detection and robustness studies is the two-component 
mixture, where both distributions are zero mean, but one has greater variance than the other 
[3].  

2
Lσ

The proposed set of distributions, which has the worth property that maximizes the 
asymptotic variance (or, equivalently, minimizes Fisher information), is Gaussian in the 
centre and Laplacian in the tails. It switches from one to the other at a point whose value 
depends on the fraction of contamination ε. Larger fractions corresponding to smaller 
switching points, and vice versa [1,3]. Another method which is frequently applied in digital 
signal processing to model the impulsive noise is the family of the symmetric α-stable 
distributions (SαS). The impulsiveness in SαS is controlled only by one parameter α which 
is called the characteristic exponent. The main difficulty with applying the SαS is the fact 
that there is no-closed form of a probability density function. Only the characteristic 
function exists in the analytical form [11]. This model is not used in this work.  

As a consequence of above study, a convex combination of the mean and the median 
filters (MEM) can be defined as [3]: 

 ]1,0[),()()1()( medave ∈+−= λλλ nxnxny  (9) 

where  is the output of mean filter and is the output of median filter 
calculated in moving window of size N = 2k + 1. The output of mean filter  is defined 
as: 

)(ave nx )(med nx
)(ave nx

 , (10) (∑
+

−=

−+=≡
kn

kni
inxnx 2

ave )(minargˆ)( θθ
θ

)

 116 



COMPUTER MODELLING 

and the output of standard median filter  is defined as: )(med nx

 ∑
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)(minargˆ)(med . (11) 

As a useful quality factor for a robust estimator, Huber suggests its asymptotic 
variance since the sample variance is strongly dependent on the tails of the distribution. The 
asymptotic variance is defined as: 

 ( )( )∫= )(),( 2 zdFzFzV ψ , (12) 

where: ( )zψ  is the influence function from (5) and F(z) is the common distribution 
function of the input with corresponding f(θ) as the probability density function. Using the 
influence functions for the mean and the median filter, the resultant influence function for 
the MEM filter is given in the following form: 

 ( ) )(sgn1)( zzz λλψ +−= . (13) 

As was proven in [3] the asymptotic variance for MEM filter is defined as: 
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where: 2,1, =−= kXE k
k θμ  are the central moments. Using (14) the expression for 

optimal value of λmin is given as [3]: 
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When the input noise is Gaussian, the mean filter leads to better results of filtering 
than the median filter and ( )πλ += 22min . Likewise if the noise is Laplacian, then median 
filtering tends to obtain better results of filtering than the mean filter, and then 32min =λ . It 
is worth noting that parameter λ can change the MEM filter from linear (mean filter) to non-
linear, robust filter (median filter).  

3. EXPERIMENTAL RESULTS 

Filtering of a signal, in the time-domain results of the signal changes is an original 
spectral component. The change usually consists (in decreasing) of unwanted components 
of the input signal. The filtering process shouldn’t deform the signal, but there exists a 
group of filters which may introduce inadmissible deformations of the signal. The nonlinear 
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filters belong to this group [9]. For that reasons, the presented MEM filter is evaluated using 
the normalized mean square error (NMSE) defined as: 
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where: y(i) is the output of the evaluated filter, s(i) is the deterministic part of signal, 
without a noise and x(i) is the noisy signal, L is the signal’s length. The NMSE factor allows 
measuring the relative power of the additive residual distortions introduced by the nonlinear 
filter. Signals y(i) and s(i) are aligned and they have the same time index [9]. For the testing 
requirements, the pure ECG cycles (e.g. with a high value of SNR) are generated using 
linear combination of Hermite functions on the base of real ECG cycles sampled at 2 kHz. 
The testing data set consists of 5 different shapes of ECG cycle, each of a length 1560 
samples. Then the noise samples are added to ECG cycles with the known value of standard 
SNR factor (5, 10, 20 and 30 dB). In this work, a simulated noise and a real electromyogram 
samples (sampled at 2kHz) are used. The mixture of ε-contaminated (ε = 0.4 [1]), Gaussian 
N(0,1) and Laplacian L(0, )2

Lσ  noise with value of  are applied as artificial 
noise. The NMSE factor is calculated for 200 different realizations of noisy ECG cycles and 
then average value of NMSE is calculated as: 

4and2,12 =Lσ

 ∑
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Values of NMSE factor are calculated for three values of λ. At first, the value of λ is 
optimal for Gaussian noise, at second, the value of λ is optimal for Laplacian noise. And at 
the third case for the optimal value of λopt for which NMSE gets the minimum value. But in 
this case the knowledge of clean ECG cycle is required. This is not possible in ambulatory 
measurements. In the process of estimating λopt two additonal parameters are calculated: the 
kurtosis and the first ordinary moment m2 defined as:  

 ∑
=
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These parameters are calculated for different values of SNR and the data set consists 
of 1000 values of triples (λopt, m2, kurtosis). On this base, by using the approximation 
method of the square smoothing, the optλ′ can be expressed as the nonlinear statement which 
depends on kurtosis and m2 in the following way: 

 . (19) ( 2
2

2
22 kurtosis007.0kurtosis05.012.0kurtosis04.003.03.0 ⋅+⋅⋅−+⋅−⋅−=′ mmmoptλ )

The approximated surface of optλ′  is presented in the Figure 1. The last expression (19) 
is useful in real live measurement, when the “clean” ECG signal is unobtainable.  
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The results obtained for mixture noise and the real muscle noise are presented in Table 
1 and Table 2 respectively. The reference are the mean, median and the myriad (with the 
linear parameter k=1) filters. 

 

Fig. 1 The surface of nonlinear expression for estimation of on the base of kurtosis and m'
optλ 2. 

The best results of filtering (the smallest value of NMSE factor), i.e., the smallest 
distortion in the filtered signal are obtained (for all considered values of SNR and variance 
of Laplace part of noise) for MEM filter when λ is chosen optimally. However, 
disadvantage of such selection of λ is the requirement of acquaintance of “a pure” signal. In 
ambulatory measurements of ECG signal, such condition is not possible. An operation of 
MEM filter with estimated value of optλ′ leads to a little worse results than the optimal MEM 
filter results and MEM filter with λ=2/3 and λ=2/(2+π). The results obtained for the myriad 
filter and the moving average filter are almost the same in the whole range of  
independently from the change of SNR values. The operating of the median filter changes 
with the change of  particularly for the low values of SNR. It means that the median filter 
better suppresses the laplacian part of ε-contaminated noise. The same quality can be 
observed taking into consideration the results of MEM filtering for λ

2
Lσ

2
Lσ

opt and optλ′ . An example 
of filtering of the ECG cycle corrupted with the ε-contaminated noise is presented in the 
Fig. 2.  

In the case of muscle noise, the obtained results are not such optimistic. When the 
SNR is low, i.e., SNR=5 dB, the best results are obtained for moving average filter. For 

, the MEM with optimal value of λ introduces the smallest distortions in 
filtered signal. The results obtained for MEM filter with λ parameter estimated on the basis 
of m

dB 10SNR ≥

2 and kurtosis are near to optimal λ except for SNR=30 dB.  An example of filtering of 
the ECG cycle disturbed with the real muscle noise is presented in the Fig.3. 
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Table 1. Average NSME factor of 200 trials for a mixture ε-contaminated Gaussian and Laplacian noise (length of filter 
moving window N = 21). 

 mean NMSE [%] for 200 trials 

SNR [dB] myriad  
filter (k = 1) 

moving  
average 

median  
filter 

MEM 
filter ( optλ )

MEM 
filter ( optλ′ ) 

MEM 
filter 

λ=2/(2+π) 

MEM 
filter λ=2/3

12 =Lσ  

5 1.1635 1.3205 1.6444 1.1488 1.1817 1.1994 1.3422 
10 0.4749 0.6734 0.6244 0.4534 0.467 0.4663 0.5119 
20 0.1503 0.4211 0.0941 0.0831 0.0921 0.1031 0.0889 
30 0.1328 0.3943 0.0306 0.0303 0.0492 0.0703 0.0431 

22 =Lσ  

5 1.2167 1.3728 1.3858 1.1294 1.1417 1.1349 1.1901 
10 0.4554 0.713 0.4921 0.4033 0.4103 0.4078 0.4217 
20 0.1404 0.4135 0.0781 0.0712 0.0826 0.0920 0.0761 
30 0.1355 0.4379 0.0284 0.0282 0.0498 0.0705 0.0421 

42 =Lσ  

5 1.1694 1.3283 1.0861 0.9696 1.0132 0.9957 0.9797 
10 0.4436 0.6748 0.4138 0.3593 0.3728 0.3729 0.3681 
20 0.1473 0.3996 0.0764 0.0694 0.0793 0.0937 0.0755 
30 0.1254 0.3759 0.0281 0.0278 0.0461 0.0659 0.0401 

 

Table 2. Average NSME factor of 200 trials for a muscle noise (length of filter moving window N = 21). 

 mean NMSE [%] for 200 trials 

SNR [dB] myriad  
filter (k = 1) 

moving  
average 

median  
filter 

MEM 
filter ( optλ ) 

MEM 
filter ( optλ′ ) 

MEM 
filter 

λ=2/(2+π) 

MEM 
filter λ=2/3

5 5.3004 4.9837 6.4943 5.2451 5.3536 5.4067 5.7611 
10 1.7512 1.8411 2.1366 1.7181 1.7719 1.7579 1.874 
20 0.2794 0.5105 0.2635 0.222 0.2286 0.2358 0.2336 
30 0.1436 0.4102 0.0472 0.0456 0.0621 0.0818 0.0564 
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Fig. 2 An example of filtering of ECG cycle corrupted with ε-contaminated noise (upper plot) and results of filtering of 
various investigated filters (MEMest – MEM filter with optλ′ , median – median filter,  

MAfilt – moving average filter, original – “clean” ECG cycle). 

 

Fig.3 An example of filtering of ECG cycle corrupted with the muscle noise (upper plot) and results of filtering of 
various investigated filters (MEMest – MEM filter with optλ′ , median – median filter,  

MAfilt – moving average filter, original – “clean” ECG cycle). 
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4. CONCLUSIONS 

In this paper the mean-median filter (MEM filter) with a method of choice of λ is 
presented and evaluated. The analyzed filter evaluation is motivated from the robust 
statistics. The usefulness of an application of the MEM filter is statistically analyzed 
through the measurements of distortion after filtering with respect to a clean signal. The 
nonlinear combination of m2 and kurtosis is proposed to obtain value of λ parameter that is 
nearly optimal for filter action. In all investigated cases, the proposed MEM filter leads to 
better results than the reference filters. For that reason the proposed filter can be used to 
suppress an impulsive type of disturbances. 

Because the muscle noise has very difficult nature (for example an impulsive nature) 
and there does not exist one accurate model of such noise, the possibility of model the 
muscle noise with the mixture ε-contaminated Gaussian and Laplacian noise is tested in this 
paper. The muscle noises are non-stationary and non-linear by nature, but a part of an EMG 
signal in a finished time interval has sufficient stationary features. The proposed model is 
only a little step to find out more about the muscle noise. 

The evaluation procedure is constructed for detection of distortions in a signal after 
filtering. Such assumption requires knowledge about a signal and disturbances. The full 
control on the level of noise and other features (for example ECG cycles with late 
potentials) of a signal has only artificial generated signal. Such approach also permits to 
investigate a noise model. This is the main and important advantage of artificial signals. The 
first step of the biomedical signal processing system is an application of a noise reduction 
method. Artificial signals allow checking the quality of the de-nosing algorithms. Using a 
real life signal such conditions are unavailable. Even if SNR is 30 dB, there still exists 
possibility for comparing filtered signal with a “pure” signal in spite of the fact that such the 
level of noise permits to make automatic or manual interpretation in real live measurement.  

ACKNOWLEDGMENT 

The author would like to thank the anonymous referees for their valuable suggestions. 

BIBLIOGRAPHY 

[1] AYSAL T.C., BARNER K.E., Robust frequency-selective filtering using weighted sum-median filters, in 
Proceedings of the 40th Annual Conference on Information Sciences and Systems (CISS2006),(Princeton, NJ), 
Mar. 2006. 

[2] GONZALEZ J.G., ARCE G.R., Statistically-efficient filtering in impulsive environments: weighted myriad 
filters, EURASIP Journal on Applied Signal Processing, 2002:1, pp.4-20. 

[3] HAMZA B.A., KRIM H., Image denoising: a nonlinear robust statistical approach, IEEE Transactions on 
Signal Processing, vol. 49, No. 12, pp. 3045-3054, 2001. 

[4] HU X., NENOV V., A single-lead ECG enhancement algorithm using a regularized data-driven filter, IEEE 
Transactions on Biomedical Engineering, vol. 53, No. 2, pp.347-351, 2006. 

[5] HUBER P., Robust Statistics, John Wiley & Sons, Inc., 1981. 
[6] KALLURI S., Nonlinear Adaptive Algorithms for Robust Signal Processing and Communications in Impulsive 

Environments, Ph.D. Thesis (1998), University of Delaware. 

 122 



COMPUTER MODELLING 

[7] LEE Y.H., KASSAM S.A., Generalized Median Filtering and Related Nonlinear Filtering Techniques, IEEE 
Transactions on Acoustics, Speech, and Signal Processing, 1985, 33, 672-683. 

[8] ŁĘSKI J., Robust Weighted Averaging, IEEE Transactions on Biomedical Engineering, vol. 49, No. 8, pp. 796-
804, 2002. 

[9] PANDER T., An application of a weighted myriad filter to suppression an impulsive type of noise in 
biomedical signals, TASK Quartarly, 2004. 

[10] RABIE T., Robust estimation approach for blinding denoising, IEEE Transactions on Image Processing, vol. 
14, No. 11, pp. 1755-1765, 2005. 

[11] SHAO M., NIKIAS Ch.L., Signal processing with fractional lower order moments: stable processes and their 
applications, Proceedings of IEEE, 1993, 81, 986-1009. 

[12] TOMPKINS W.J., Ed., Biomedical Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1993. 
[13] YIN L., YANG R., GABBOUJ M., NEUVO Y., “Weighted Median Filters: a Tutorial”, IEEE Trans. On 

Circuits and Systems - II: Analog and Digital Signal Processing, 1996, vol. 43, pp. 157-192. 

 123



COMPUTER MODELLING 

 

 124 


