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EMPIRICAL BAYESIAN AVERAGING METHOD  
AND ITS APPLICATION TO NOISE REDUCTION IN ECG SIGNAL 

An electrocardiogram (ECG) is the prime tool in non-invasive cardiac electrophysiology and has a prime 
function in the screening and diagnosis of cardiovascular diseases. However one of the greatest problems is that 
usually recording an electrical activity of the heart is performed in the presence of noise. The paper presents 
empirical Bayesian approach to problem of signal averaging which is commonly used to extract a useful signal 
distorted by a noise. The averaging is especially useful for biomedical signal such as ECG signal, where the 
spectra of the signal and noise significantly overlap. In reality the variability of noise can be observed, with 
power from cycle to cycle, which is motivation for weighted averaging methods usage. It is demonstrated that by 
exploiting a probabilistic Bayesian learning framework, it can be derived accurate prediction models offering 
significant additional advantage, namely automatic estimation of ‘nuisance’ parameters. Performance of the new 
method is experimentally compared to the traditional averaging by using arithmetic mean and weighted 
averaging method based on criterion function minimization. 

1. INTRODUCTION 

In majority of biomedical signal processing systems (as electro-cardiographer signal 
that is the main case of interest in this contribution) noise reduction plays very important 
role. Accuracy of all later operations performed on signal, such as detections or 
classifications, depends on the quality of noise-reduction algorithms. Usually in case of 
electro-cardiographic (ECG) signal, two principal sources of noise can be distinguished: the 
‘technical’ caused by the physical parameters of the recording equipment and the 
‘physiological’ representing the bioelectrical activity of living cells not belonging to the 
area of diagnostic interest (also called background activity). Both sources produce noise of 
random occurrence, overlapping the ECG signal in both time and frequency domains [2].  

Using this fact that certain biological systems produce repetitive patterns, an averaging in the 
time domain may be used for noise attenuation. Traditional averaging technique assumes the 
constancy of the noise power cycle-wise; however the most types of noise are not stationary. In 
these cases a need for using weighted averaging occurs, which reduces influence of hardly distorted 
cycles on resulting averaged signal (or even eliminates them). Therefore, many recently developed 
noise removal techniques involve weighted signal averaging [8]. 

The paper presents new method for resolving of signal averaging problem, which incorporates 
empirical Bayesian inference. By exploiting a probabilistic Bayesian framework [3], [6] and an 
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expectation-maximization technique [4] it can be derived an algorithm of weighted averaging which 
application to electro-cardiographic (ECG) signal averaging is competitive with alternative methods 
as will be shown in the later part of the paper. 

2. SIGNAL AVERAGING METHODS 

Let us assume that in each signal cycle  is the sum of a deterministic (useful) signal 
, which is the same in all cycles, and a random noise  with zero mean and variance 

for the ith cycle equal to . Thus, 
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, and the j is the sample index in the single cycle Mi ,,2,1 K= Nj ,,2,1 K=  (all cycles have 
the same length N). The weighted average is given by 
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,where  is a weight for ith signal cycle and  is the averaged signal. iw )( jv

2.1. TRADITIONAL ARITHMETIC AVERAGING 

The traditional ensemble averaging with arithmetic mean as the aggregation operation 
gives all the weights  equal to iw 1−M . If the noise variance is constant for all cycles, then 
these weights are optimal in the sense of minimizing the mean square error between v and x, 
assuming Gaussian distribution of noise. When the noise has a non-Gaussian distribution, 
the estimate (1) is not optimal, but it is still the best of all linear estimators of x [7]. 

2.2. WEIGHTED AVERAGING METHOD BASED ON CRITERION FUNCTION MINIMIZATION 

As it is shown in [8], for yi = [yi(1), yi(2),…, yi(N)]T, w = [w1, w2,…, wM]T and 
v = [v(1), v(2),…, v(N)]T minimization the following scalar criterion function 
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with respect to the weights vector w yields 
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for , where Mi ,,2,1 K= )(⋅ρ  is a measure of dissimilarity for vector argument and 
 is a weighting exponent parameter. When the most frequently used quadratic 

function 
),1( ∞∈m

2

2
)( ⋅=⋅ρ is used, the averaged signal can be obtained as 
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for the weights vector given by (2) with the quadratic function. The optimal solution 

for minimization (2) with respect to w and v is a fixed point of (3) and (4) and it is obtained 
from the Picard iteration. 

 If m tends to one then the trivial solution is obtained where only one weight, 
corresponding to the signal cycle with the smallest dissimilarity to averaged signal, is equal 
to one. If m tend to infinity then weights tend to 1−M  for all i. Generally, a larger m results 
in a smaller influence of dissimilarity measures. The most common value of m is 2 which 
results in greater decrease of medium weights [8]. 

2.3. EMPIRICAL BAYESIAN WEIGHTED AVERAGING METHOD 

Given a data set , where i is the cycle index )}({ jyi=y Mi ,,2,1 K=  and the j is the 
sample index in the single cycle Nj ,,2,1 K= , there are made assumptions that 

, where a random noise  is zero-mean Gaussian with variance for the 
ith cycle equal to , and signal x has also Gaussian distribution with zero mean and 
covariance matrix . Thus, from the Bayes rule, the posterior 
distribution over x and the noise variance is proportional to 
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, where  and , because of assumption that the prior 2−= ii σα 2−= jj ηβ )(αp  is 
approximately constant (for large M the influence of this prior is very small). The values x 
and α  which maximize (5) are given by 
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for  and . The conditions in equations (6) and (7) are obtained 
by differentiating logarithm of (5) with respect to x and 

Mi ,,2,1 K= Nj ,,2,1 K=
α  respectively and setting the 

results equal to zero. 
Since jβ  could not be observed, the iterative EM algorithms is used like in [5]. 

Assuming an exponential prior )exp()( jjp λβλβ −=  for all j, as values of jβ  it is taken  
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The estimate  of hyperparameter λ̂ λ  can be calculated by applying empirical method 
[9]. The probability distribution function )|( λxp  can be written in the form  
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where the index j in  and )( jx jβ  is omitted for clarity. 
Since 
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the estimate  of hyperparameter λ̂ λ can be calculated based on first absolute sample 
moment 
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Therefore the proposed Bayesian weighted averaging algorithm can be described as 
follows, where ε  is a preset parameter: 
1. Initialize . Set the iteration index NRv ∈)0( 1=k . 
2. Calculate the hyperparameter  using (11), next  using (8) for  and 

 using (6) for , assuming . 

)(kλ )(k
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)(k
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3. Update the averaged signal for kth iteration  using (7) and  and , assuming 

. 
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4. If ε>− − )1()( kk vv  then 1+← kk  and go to 2, else stop. 

3. NUMERICAL EXPERIMENTS 

In all experiments using Weighted Averaging method based on Criterion Minimisation 
Function (WACMF) and Empirical Bayesian Weighted Averaging method (EBWA) 
calculations were initialised as the means of disturbed signal cycles. Iteration were stopped 
as soon as the L2 norm for a successive pair of vectors was less than 10-6 , respectively w 
vectors for the WACMF and v vectors for the EBWA. For a computed averaged signal the 
performance of tested methods was evaluated by the maximal absolute difference between 
the deterministic component and the averaged signal. The root mean-square error (RMSE) 
between the deterministic component and the averaged signal was also computed. All 
experiments were run in the MATLAB environment. 

The simulated ECG signal cycles were obtained as the same deterministic component 
with added realisations of random noise. The deterministic component presented in Figure 1 
was obtained by averaging 500 real ECG signal cycles (2000-Hz and 16-bit resolution) with 
high signal to noise ratio. Before averaging these cycles was time-aligned using the cross 
correlation method. A series of 100 ECG cycles was generated with the same deterministic 
component and zero-mean white Gaussian noise with four different standard deviations. For the 
first, second, third and fourth 25 cycles, the noise standard deviations were 10, 50, 100, 200 μV, 
respectively. These signal cycles were averaged using the following methods: Traditional 
Arithmetic Averaging (TAA), WACFM with m = 2 and EBWA. Subtraction of deterministic 
component from these averaged signals gives a residual noise.  
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Fig. 1 The example of ECG signal and this signal with 50μV standard deviation noise. 

The RMSE and the maximal absolute value (MAX) of residual noise for all tested 
methods are presented in Table 1. In this table there are also presented results when noise 
was multiplied by scale factor equal to 2 and 10 respectively. The best results for each case 
are bolded. It shows that in all experiments the smallest RMSE were obtained by EBWA 
method and a little bit worse results were obtained by WACFM, but the smallest MAX error 
for noise multiplied by 10 was obtained by WACFM.  

Table 1. RMSE and maximum error for averaged ECG signals with Gaussian noise. 

Scale factor Type of error TAA WACFM EBWA 

RMSE [μV] 12.0964 1.9381 1.9131 
1× 

MAX [μV] 39.1728 5.7307 5.1671 

RMSE [μV] 24.1927 3.8762 3.7788 
2× 

MAX [μV] 78.3457 11.4615 10.3521 

RMSE [μV] 120.9635 19.3810 17.2270 
10× 

MAX [μV] 391.7285 57.3073 58.9807 
 
Additionally, the RMSE and the absolute maximum value of residual noise for all 

tested methods are shown in Figure 2 and Figure 3 respectively. For better comparison the 
vertical axes present the values of errors in logarithmic scale. 
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Fig. 2 The root mean-square error between the deterministic component and the averaged signal. 

39,1728

78,3457

391,7285

5,7307

11,4615

57,3073

5,1671

10,3521

58,9807

1

10

100

1000

1x 2x 10x

Scale factor

M
A

X

TAA
WACFM
EBWA

 

Fig. 3 The absolute maximum error between the deterministic component and the averaged signal 

Another experiment was performed with uniformly distributed random noise with 
zero-mean and 10, 50, 100, 200 μV standard deviations for the first, second, third and fourth 
25 cycles, respectively. The RMSE and the maximal absolute value (MAX) of residual 
noise for all tested methods are presented in Table 2. In this table there are also presented 
results when noise was multiplied by scale factor equal to 2 and 10 respectively. The best 
results for each case are bolded. 
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Table 2. RMSE and maximum error for averaged ECG signals with uniform noise 

Scale factor Type of error TAA WACFM EBWA 

RMSE [μV] 11.6650 2.1155 2.0503 
1× 

MAX [μV] 30.6427 7.1478 6.1428 

RMSE [μV] 23.3300 4.2310 4.0775 
2× 

MAX [μV] 61.2854 14.2956 12.3065 

RMSE [μV] 116.6498 21.1551 18.6963 
10× 

MAX [μV] 306.4268 71.4781 62.6855 
 
As can be seen in the Table 2, for the uniformly distributed random noise, which 

obviously does not satisfy the assumption for the algorithm, the results of the experiment 
are similar to those obtained in the case of Gaussian noise. However, in practice besides of 
Gaussian or uniform types of noise, it can be observed random noise with heavy-tailed 
distribution [1]. The example of such distribution is Cauchy distribution with probability 
density function given by 
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where l is the location parameter and s is the scale parameter. The parameters are 
commonly used instead of expected value and standard deviation because of the absence of 
first two moments. In next experiment to the ECG signal was added Cauchy distributed 
random noise with l = 0 and s = 10 μV. In Figure 4 the deterministic component was 
presented along with example of Cauchy noise. 

 

Fig. 4 The simulated ECG signal and this signal with Cauchy noise 

The RMSE and the maximal value (MAX) of residual noise for all tested method are 
presented in Table 3 and the best results are bolded. In this experiment the signal cycles 
were averaged using WACFM with m = 3, because for most common value of m = 2, the 
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method does not reach stop condition even after 1000 iterations (although in previous cases 
it did not require more than 20 iterations to stop). It shows that again the smallest RMSE 
were obtained by EBWA method and a little bit worse results were obtained by WACFM 
and again despite the fact that the assumption of Gaussian distributed random noise is not 
satisfied, the results of the experiment are much better compared to the ones obtained by 
traditional arithmetic averaging. 

Table3. RMSE and maximum error for averaged ECG signals with Cauchy noise 

Type of error TAA WACFM EBWA 

RMSE [μV] 424.4 17.4098 14.3475 

MAX [μV] 2242.3 59.7734 42.5693 

4. CONCLUSION 

In this work new approach to weighted averaging of biomedical signal was presented 
along with the application to averaging ECG signals. Presented method uses the results of 
empirical Bayesian methodology which leads to improved reduction of noise comparing 
with alternative methods. The new method is introduced as Bayesian inference together 
with expectation-maximization procedure. It is worth noting that the new algorithm does not 
require setting of additional parameters in contrast to for example WACFM which needs 
value of an exponential parameter m. The only parameter λ which influences performance 
of the procedure is estimated during iterations from input values by empirical method. 
Another advantage of presented method is fast convergence to the optimal result. In all 
performed experiments it did not require more than 12 iterations to stop. 

The results of numerical experiments show usefulness of the presented method in the 
noise reduction in ECG signal competitively to existing algorithms and the empirical 
Bayesian methodology should be evaluated for other prior distributions in the future. 
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