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PARTIAL VOLUME EFFECT DETECTION IN MRI SEGMENTATION BASED 
ON APPROXIMATE DECISION REDUCTS 

Segmentation of Magnetic Resonance Imaging (MRI) is a process of assigning tissue class labels to 
voxels. One of the main sources of segmentation error is the partial volume effect (PVE) which occurs most 
often with low resolution images – with large voxels, the probability of a voxel containing multiple tissue classes 
increases. We propose a multistage algorithm for segmenting MRI images with a mid-stage of recognizing the 
PVE voxels. The information about PVE regions added to other voxels features extracted from the image can 
increase the overall accuracy of the segmentation. In our methods we have utilize a classification approach based 
on approximate decision reducts derived from the data mining paradigm of the theory of rough sets. An 
approximate reduct is an irreducible subset of features, which enables to classify decision concepts with a 
satisfactory degree of accuracy in the training data. The ensembles of best found reducts trained for appropriate 
approximation degrees are applied to detection of the PVE and performing the segmentation. 

1. INTRODUCTION 

Image segmentation is a process of assigning the class labels to data containing 
spatially varying information. In this article we focus on a Magnetic Resonance Imaging 
(MRI) of human brain imaged through the series of 2D slices sampled at a particular 
thickness and resolution. High slice thickness and low image resolution may lead to one of 
the main sources of error in MRI segmentation called partial volume effect (PVE). PVE 
occurs when image voxel represents more than one tissue type - when the size of a voxel 
increases the probability of a voxel containing multiple tissue classes increases. It is 
expected that solving the PVE issue would increase the MRI segmentation results. 

In our approach we create a decision table with objects corresponding to voxels and 
decisions derived from the Simulated Brain Database (SBD) provided by Montreal 
Neurological Institute [2,3,5,6] of fully segmented images. SBD contains 3D volumetric 
multi-spectral images (T1, T2, PD) with axial orientation. Various data sets are available 
with varying slice thickness from 1mm to 9mm. Figure 1 and Figure 2 present an example 
of 3mm and 9mm slices imaged in three modalities together with the map matching the 
PVE regions on the image. One can notice that the amount of PVE is larger on 9mm slice. 
In our previous work [18] it was stated that when dealing with high level PVE images a 
higher degree of approximation should be used in the classification process. In this research 
we use best found parameters from our previous research. 
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In proposed segmentation methods we have utilized a classification approach based on 
approximate reducts derived from the data mining paradigm of the theory of rough sets. An 
approximate reduct is an irreducible subset of features, which enables to classify decision 
concepts with a satisfactory degree of accuracy in the training data. The ensembles of best 
found reducts trained for appropriate approximation degrees are applied to classification of 
tissue type represented by a voxel. We propose a multistage segmentation algorithm for 
segmenting human brain MRI Images. In the first stage the PVE identification process is 
performed, originally proposed in [17]. The results of the PVE identification are then used 
as an additional feature (attribute) in the final segmentation stage. 

The paper is organized as follows: In Section 2, we describe data preparation i.e. 
feature extraction methods that were applied to MRI images. Section 3 presents foundations 
of the applied approximate attribute reduction methods. Section 4 reports experimental 
results. Finally in Section 5 we conclude our research. 

2. DATA PREPARATION 

The magnitudes of MRI images are given in three modalities T1, T2, PD as presented 
on Figure 1 and 2. Under normal circumstances, the magnitudes of voxels form Gaussian 
distributions corresponding to the following tissue classes: bone and background (BCG), 
Cerebrospinal fluid (CSF), Grey Matter (GM), White Matter (WM), and others (fat, skin, 
muscle). In this work we focus on CSF, GM, and WM. 

 

Fig.1. MRI Modalities (from left) T1, T2, PD and PVE region map (3mm slice thickness) 

 

Fig.2. MRI Modalities (from left) T1, T2, PD and PVE region map (9mm slice thickness) 

To develop the segmentation, we first generate the training data. Following the 
standards of the theory of rough sets [8,9], we form a decision table IS=(U,A), where each 
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attribute a∈A is a function a:U→Va from the universe U into the value set Va. The 
elements of U are voxels. The set A contains voxel attributes extracted for each modality. 
Below we characterize the method we employ to extract the attributes in A from the MRI 
images. 

 
EDGE attributes are denoted by edge_T1, edge_T2, edge_PD. They are derived using 

a simple Discrete Laplacian method - a general non-directional gradient operator 
determining whether the neighborhood of a voxel is homogenous. For instance, edge_T1 
takes the value 0 for a given voxel, if its neighborhood for T1 is homogeneous, and 1 
otherwise. 

 
MAGNITUDE attributes are denoted by hcMag_T1X, hcMag_T2X, hcMag_PDX, 

somMag_T1, somMag_T2, somMag_PD. They are derived using the histogram clustering 
algorithm HCLUSTER [16] (prefix hc) and self-organizing map SOM (prefix som) for all 
three image modalities. The index X used with 'hc' attributes denotes the number of clusters 
created by the algorithm. We generate hc-attributes based on four and five clusters. SOM 
and HCLUSTER perform the unsupervised segmentation of the image. The results of such 
segmentation are recorded as the corresponding attribute values. 

 
NEIGHBOR attributes are denoted by hcNbr_T1X, hcNbr_T2X, hcNbr_PDX, as well as 

somNbr_T1, somNbr_T2, somNbr_PD. They are derived from the EDGE and 
MAGNITUDE attributes. If the edge is not detected for a given voxel, the neighbor 
attribute's value is copied from the magnitude attribute. Otherwise, it is equal to the 
magnitude attribute's value occurring more frequently within the direct voxel's 
neighborhood. Naturally, for hc-attributes we use the class values derived from the 
HCLUSTER algorithm, and for som-attributes - those provided by SOM. For example, the 
value of hcNbr_T14 is calculated from edge_T1 and hcMag_T14. 

 
MASK attribute, denoted by msk, is a rough estimation of the position of a voxel 

within the slice of the brain. The procedure of creating the mask is the following: first, the 
brain region is extracted from the image, then the central point of the region is calculated, 
the region is divided onto four parts by two orthogonal lines crossing in the center. Then 
three translations are made of all four parts towards by 10, 20 and 50 voxels towards central 
point. It yields concentric circles defining the position of a voxel. The values of msk are 
defined by membership of voxel to particular region. 

 
PVE attribute, denoted by isPVE, is a binary attribute that holds information about 

recognizing a voxel as PVE-voxel or noPVE-voxel. At the first stage of the segmentation 
(PVE identification) all values of this attribute are the same. The result of PVE 
identification updates the decision table with is then used in segmentation process. Please 
refer to the next section for a detailed explanation of the whole process. 

 
Attribute d∉A indicating the decision attribute is derived from the phantom images 

taken from SBD. In the PVE identification stage of the d indicates whether PVE appears on 
a voxel or not. This information is derived from so called fuzzy phantoms taken from SBD 
data, where each voxel is labeled with memberships to particular tissue types. We use the 
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threshold to decide whether a given voxel belongs to noPVE class (if its membership to one 
of tissues exceeds enough the average tissue content level for the given slice) or to PVE 
class (if memberships are not diversified enough to decide). The threshold was tuned over 
the middle brain 3mm slice to get approximately 30%/70% distribution between the PVE 
and noPVE classes. 

In the segmentation stage attribute d∉A indicates the tissue class label and is derived 
from the same fuzzy phantom image. Values of d∉A are labels taken from the phantom 
corresponding to the tissue with highest volume within a particular voxel. 

3. APPROXIMATE DECISION REDUCTS 

When modeling complex phenomena, a balance between accuracy and computational 
complexity should be obtained. This balance can be achieved through the use of a decision 
reduct: an irreducible subset B⊆A determining d in decision table IS=(U,A∪{d}). The 
obtained decision reducts are used to produce the decision rules from the training data. 
Reducts generating smaller number of rules seem to be better as the corresponding rules are 
more general and applicable. Higher generality and applicability of a rule will contribute to 
higher accuracy in the classification process as such rules tend to be more insensitive to 
noise existing in the data. Sometimes it is better to remove more attributes to get even 
shorter rules at the cost of their slight inconsistencies. One can specify a measure 
M(d/⋅):P(A)→R which evaluates the degree of influence M(d/B) of subsets B⊆A on d. Then 
one can decide which attributes may be removed from A without a significant loss of 
accuracy. Given IS=(U,A∪{d}), accuracy measure M(d/⋅), and approximation threshold 
ε∈[0,1), let us say that B⊆A is an (M,ε)-approximate decision reduct, if it satisfies 
inequality M(d/B)≥(1-ε)M(d/A) and none of its proper subsets does it. For advanced study 
on such reducts we refer the reader to [10,13]. In the reduct calculation process the Multi-
decision relative gain measure [15] was used: 

 
P(X)

P(X|E)P(E)**
card(U)

R(d/B)
XE

max1 ∑=  (1) 

where X ⊆ U is a target event (subset), E is an elementary set, assigned to a 
conditional probability P(X|E)  

 P(E) = card(E) / card(U) (2) 

 P(X) = card(X) / card(U) (3) 

 P(X|E) = card (X∩E) / card(E) (4) 

and card denotes the cardinality function. Measure  expresses the average gain 
in determining decision classes under the evidence provided by the rules generated by B⊆A 
[14,15]. Given approximation threshold ε, let us say that B⊆A is an (R,ε)-approximate 
decision reduct, if and only if it satisfies inequality 

)/( BdR
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 R(d/B) ≥ (1-ε)R(d/A)  (5) 

and none of its proper subsets does it. 
Multi-decision relative gain measure can be used, e.g., to evaluate the potential 

influence of a particular attributes on the decision. The quantities of R(d/{a}), a∈A, reflect 
the average information gain obtained from one-attribute rules. They are, however, not 
enough to select the subsets of relevant attributes. For instance, several attributes a∈A with 
low values of R(d/{a}) can create together a subset B⊆A with high R(d/B). 

The problems of finding approximate reducts are generally hard [10]. Therefore, for 
the decision table with attributes described in the previous sections, we prefer to consider 
the use of a heuristic rather than an exhaustive search. We adapt the order based genetic 
algorithm (o-GA) searching for minimal decision reducts [19] to find heuristically 
(sub)optimal (R,ε)-approximate decision reducts. We follow the same way of extension as 
that proposed in [13], also used by ourselves in the previous papers on MRI segmentation 
[16, 17, 18]. As a hybrid algorithm [7], the applied o-GA consists of two parts: 

1. Genetic part, where each chromosome encodes a permutation of attributes 
2. Heuristic part, where permutations τ are put into the (R,ε)-REDORD algorithm 

described in [13, 20]. 

4. RESULTS OF EXPERIMENTS  

The SBD phantoms have a complete set of MRI volumes, including partial voxel 
volumes (fuzzy phantoms) of varying slice thickness (3 - 9 mm). For this study, 3mm and 
9mm thick volumes were employed. A range of slices from the center of the volume for 
training/testing purposes was selected. 

In the PVE identification step reducts and rules were generated from the training set. 
Using the derived rule set an identification of the PVE regions was performed. The 
identification result was then used as a source for isPVE attribute in the decision table, and 
the decision values were substituted with the tissue class labels taken from the fuzzy 
phantom as described in the Data Preparation section. In the segmentation step the new 
decision table was used again for generation of reducts and rules. 

Reducts and rules were generated always using one slice chosen randomly from the 
SBD database, for slice range <27; 36> for 3mm and <7; 15> for 9mm 0% noise and 0% 
INU (bias field inhomogeneities) The resulting classifier was tested against eight slices 
(always different than those chosen for training) from the same range. The segmentation 
becomes more challenging when applied to images representing thicker slices as the number 
of voxels with PVE is proportional to slice thickness. Figure 3 presents the average (for 8 
experiments repeated with different training/testing slices) accuracy (the number of 
correctly recognized voxels divided by the total number of voxels).  

Both results are compared – without embedding the PVE identification stage and using 
the multistage segmentation process (with PVE identification). For the 1mm data only the 
crisp data are available (no PVE effect) so only the previously proposed segmentation 
algorithm could be performed. One can notice that adding the PVE identification step 
increases the overall accuracy. 
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Slice 

Thickness 

Accuracy without 

PVE ident. 

Accuracy with 

PVE ident. 

1 mm 98 % N/A 
3 mm 89% 91% 
9 mm 81% 86% 

Fig.3. Comparison of results obtained using the proposed segmentation algorithm with and without the PVE 
identification step. 

5. FIGURE 4 PRESENTS THE SEGMENTATION RESULTS IN COMPARISON TO 
IMAGE PHANTOMS USED DURING TRAINING. 

 

Fig.4. Results of MRI segmentation. 3mm phantom (left) and segmentation result (right). 

6. CONCLUSIONS 

A multistage rough set-based algorithm for brain tissue classification in multi-modal 
MR images was presented. In comparison to the previous research adding PVE 
identification to the segmentation algorithm improved the overall accuracy. The results were 
obtained without any pre-processing such as median filtering or any smoothing operation. 
Further investigation of the segmentation accuracy, when various pre-processing techniques 
are embedded into the algorithm, is suggested. In this work multi-modal simulated MRI 
images were used for training and testing. The reader may refer to our previous work [17] 
where the similar algorithm was tested on a real-world, single modality (T2) images. 
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