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SEGMENTATION OF CELLS 

The image segmentation is one of the most crucial steps in automated analysis of medical and biological 
images. The segmentation process allows for a detection of object contours. Due to specificity of imaging 
technique, a correct detection of cell contours is problematic because of the fuzzy and broken edges. Moreover, 
the cells are very often connected. The modified watershed algorithm based on the diffusion model presented in 
this paper has been successfully applied to segmentation of cells where the mentioned difficulties appear. The 
method was tested in contact endoscopy, a novel technique in the diagnosis of the larynx. 

1. INTRODUCTION 

Image segmentation of cells is a process of grouping an image pixels into significant 
regions denoting the cells. It is known as one of the basic, but very “cell-dependent” 
procedure because of the noise, and specific, ambiguous cell appearance in the raw images. 

 The segmentation method presented in this paper consists of two main steps: an 
image enhancement step, based on a nonlinear diffusion process generating an activity 
image, and followed by a modified watershed segmentation step. In the contrary to [9], we 
propose a novel definition of the activity image. Instead of considering an activity image as 
a three-dimensional surface, we propose a novel approach where the activity image reflects 
the degree of diffusion. It assumes high values in the vicinity of blurred edge pixels with 
low gradient, and the low values where the diffusion process does not introduce great 
changes in pixel values i.e. for interior pixels. In the case of strong edges with high gradient 
values (for example: between nuclei and cytoplasm) the diffusion process is inhibited and 
the degree of diffusion tends to zero. In the watershed segmentation step the activity image 
is fed through a modified watershed algorithm. In our case the activity image is considered 
as a topographic surface where the lines corresponding to the “mountains” (reflecting to 
fuzzy edges of cells) on the surface delineate the segments (cells) in the segmented image. 
The modified watershed algorithm takes advantage of the activity image and conceptually is 
derived from the geodesic reconstruction originally developed by Beucher [2] and later 
modified by Najman et al. [8]. The basic idea presented in these papers is to use the 
flooding principle developed by Vincent [11]. The new approach presented in this paper 
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assumes that the activity image is an input image f which is “reconstructed” by flooding the 
catchment basins of f until they overflow, or until f (negative of image f ) is achieved, 
which is also simultaneously flooded by the Vincent’s watershed algorithm. 

The method was tested on images from contact endoscopy that visualizes cells of the 
larynx. Similarly to other imaging techniques, such as phase contrast microscopy or bright 
field microscopy, the main challenge lies in a proper segmentation of cells and nuclei 
despite of their ambiguous appearance that results in fuzzy and broken cell membranes and 
nuclei envelopes (see Fig. 2). 

 The following structure of this paper is organized as follows. In the next section the 
concept of non-linear diffusion is presented. The following section consists of two 
subsections. The first presents the “cell model” and discusses the construction of the activity 
image. The second one describes a modified watershed algorithm used for cell detection. In 
the last section the experimental results and few conclusions are drawn. 

2. DIFFUSION MODEL 

 In physics, diffusion processes govern the transport of heat, matter, and momentum 
leading to an increasing equalization of spatial concentration differences. In image 
processing the diffusion model can be adopted by treating the changes of grey or colour 
values of the pixel located at spatial coordinates ),( yx  as local concentrations or, more 
precisely, as the feature vector cr  of a pixel value. Each component of the feature vector 
corresponds to the “concentration of diffusing pixels”. In every time step some fraction of 
grey or colour value is exchanged with the neighbouring pixels according to formula [7]: 
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where ),,( tyxD  denotes the inhomogenous diffusion coefficient: 
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),( yxη stands for the exchange rate with reference concentration 0c . λ  is an adjustable 
parameter. For low gradients λ<<∇ ),,( tyxI , D approaches 1; for high gradients 

λ>>∇ ),,( tyxI , D tends to zero. The mδ parameter and exponent m control steepness of the 
exponential (soft) threshold. The linear operator B denotes smoothing filter convolved with 
image ),( yxI at scale t. In our approach a standard diffusion model ( 0=η ) is assumed 
resulting in: 
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mδ and m  values were set similarly to Weickert [13] to 4=m  and 31488.3=mδ , 
respectively. The dsM ,,Ψ  function denotes a sigmoidal quasi-thresholding filter of a form: 
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The parameter M denotes maximum value that can be obtained after applying a filter, s 
controls steepness of a sigmoidal “step” and d governs the shift. These three parameters 
decrease small values ( 0>d ) while taking greater values nonlinearly normalized up to a 
given value M.  

The spatio-temporal discretisation of the model can be done with the use of simple 
explicit 1st order scheme which describes the concentration change at the pixel located in a 
position (m,n) at time k+1 : 
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Linear smoothing filter B and the non-linear “flattening” function dsM ,,Ψ  are dedicated to 
improve the stability of the simple explicit scheme which is sensible to local discontinuities 
and sharp edges. The dsM ,,Ψ  filter can “select” only those edges which are sufficiently 
important. For computing the gradient map described in Eq. 2 by the ),,(( tyxIB ⊗∇  
module the Canny edge detector [4] was used. In practice, modification of pixel values, 
expressed by Eq. 5, is repeated 30=q  times. 

3. SEGMENTATION ALGORITHM 

3.1.  DEFINITION OF THE ACTIVITY IMAGE  

The blurred and broken edges of cells make it impossible to precisely detect the cell 
contours with a classical watershed approach. For better visualization and later 
considerations let us create the “cell model” with centrally located nucleus, by suitably 
“modulated” inverse 2D Gaussian kernel whose values are presented as the grey values in 
Fig. 1. 

The approach proposed in this paper assumes that the activity image “reflects” the 
degree of diffusion, or more precisely - the degree of local concentration changes described 
as the feature vector c

r
 for every point (pixel) of the analysed image. Hence, the high values 

reflect the neighbourhood of fuzzy edge pixels with low gradient, and the low values reflect 
image points where the diffusion process is slower or inhibited. The amount of diffusion 
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),,( tyxSΔ  for one image point located at spatial coordinates ),( yx  up to scale t is expressed 
by the formula: 

 [ ]dtttyxItyxItyxS
t

 ),,(),,(),,( ∫ Δ−−=Δ  (6) 

where ),,( tyxI  denotes pixel value after the diffusion-based filtering at scale t and 
),,( ttyxI Δ−  denotes pixel value at the previous scale value equal to ( tt Δ− ). At scale 0=t  

)0,,( =tyxI  denotes pixel values being either negative or original, in the case of the bright 
cells on the dark background. In practice, differences between pixel values for increasing 
scales t are normalized according to the formula: 
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Where ( )tt SS ΔΔ min),max( denote maximal and minimal difference 
),,(),,( ttyxItyxI Δ−− at scale t. The diffusion process is stopped when 

( ) γ≤Δ−Δ tt SS min)max(  where γ  is user-defined value(for real images γ  was set to 2). 
 The resulting activity images of the cell model are presented in Fig. 1. The value of q, 

that denotes the number of iterations for process described by Eq. 5 depends on the 
“fuzziness” of a cell membrane i.e. the fuzzier border edge the higher values of q . 

As it is illustrated in Fig. 1, high values reflect the neighbourhood of fuzzy edge pixels 
presented at the border of the cell model while low nuclei values indicated where the 
changes corresponding to degree of diffusion are minimal. In the case of stronger edges (i.e. 
between dark an bright regions) it is interesting that pixels in the activity image are 
“attracted” to real image regions yielding sharper image edges, which later implies a better 
segmentation of nuclei for the watershed algorithm. 

3.2. THE MODIFIED WATERSHED ALGORITHM 

To obtain the actual segmentation of cells, the new approach for the watershed 
algorithm is presented. It is applied to the activity image that is obtained when the non-
linear diffusion process is stopped. In our case, the activity image is considered as a 
topographic surface where the lines corresponding to the “mountains” on the surface 
delineate the segments (cells) in the segmented image. The modified watershed algorithm 
presented in this paper takes advantages of the activity image. Conceptually it is derived 
from Beucher-Meyer principle [2,3] called the waterfall algorithm which relies on the 
geodesic reconstruction by erosion. It is needed to stress that the proposed solution should 
not be considered “the modified geodesic reconstruction algorithm” as it uses the concept of 
flooding under some constraints presented in the [2,8]. 

The basic idea is to use the flooding principle developed by Vincent [11]. This 
principle is adapted to the geodesic reconstruction of activity image f under f , where 
f denotes complement (negative) of f . f and f are flooded simultaneously and in the 

morphological terminology we would say that the activity image f is “eroded” under the 
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“dilated” f . It means that the watersheds produced on the image f become “important” 
only when they meet watersheds from f . This way we can reconstruct f by flooding the 
catchment basins of f until they overflow, or until the watersheds of f  are met. When we 
flood the catchment basins of f flooding is stopped until one of their saddle points (contact 
point between two basins) are reached. In this case two cases of watersheds are possible: 

• the height of flooding on f reaches the height of flooding on f ; this saddle is 
the contact point (watershed point) between basin on f  and basin on f , 

• the saddle point between two basins of f is reached, 
The segmentation algorithm presented in this paper based on the activity image 

consists of two steps. First, the activity image is rescaled linearly to the full range of grey 
values. This will form a number of “lakes” on the topographic landscape which reflect the 
whole cells. In the case of the cell segmentation it “improves” topographic landscape for the 
proposed watershed algorithm. This can be explained by the fact that maximal values in the 
activity image are present in the neighbourhood of blurred edge pixels with low gradient 
(cell borders), and the lowest values where the diffusion process is inhibited i.e. for cells 
interior pixels. More importantly, the watershed algorithm does not need the regional 
minima (or markers) as an input. The watershed algorithm starts flooding from the minima 
that correspond to cells on the image. By flattening the cell interior this step make nuclei 
disappear. Therefore, for the nuclei detection procedure this step is omitted. 

In the second step, the rescaled activity image undergoes the presented, modified 
watershed algorithm. 

The results of the cell and nuclei segmentation for the two artificial models with one 
(lower row) and two (upper row) cells are presented in the last column in Fig. 4. The second 
column includes the images presenting the degree of diffusion for input images, the third 
one column depicts the activity images after linear scaling. The parameter values for the 
images presented in Fig. 4 are the following: 10=q , 08.0=Δt  for the cell segmentation and 

03.0=Δt  for the nuclei segmentation. 

   

   

Fig.1. The results of cell and nuclei segmentation for artificial images with one cell (upper row) and two cells (lower 
row). Left column represents cell model (2D Gaussian kernel), middle – the activity image, and right – results of the 

segmentation. 
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3.3. CELL AND NUCLEI SEGMENTATION IN CONTACT ENDOSCOPY 

The contact endoscopy has been extensively used in gynaecological, and more recently 
to visualize laryngeal and nasal tissues [1,12]. Preliminary experiences with contact 
endoscopy were realized in co-operation with the Department of Otolaryngology of the 
Wroclaw Medical University in Poland. They used Karl Storz 8715 BA contact endoscope 
guided down by the Kleinsasser laryngoscope towards the larynx until the exact area of 
interest was contacted. The main difficulties of contact endoscopy are related to diagnostic 
interpretation of the standard PAL-video signal. Therefore, for better interpretation and 
evaluation high-resolution images were captured and analysed with image processing and 
analysis methods. The prototype imaging system was constructed from 7 MPixels C-7070 
Wide Zoom Olympus camera equipped with a specially constructed converter connected 
with a Karl Storz 8715 BA contact endoscope and Storz Xenon 300 lamp. As the whole 
system should be used during a surgery investigation, it was fully automated. Preliminary 
experiences indicated that the main problem was an objective diagnostic interpretation of 
resulting images (c.f. Fig. 2). Also, not enough medical experiments were performed, to 
draw statistically valuable results of the segmentation method. 
Fig. 2 shows an example of images clipped from the original one as well as the 
segmentation results. The image analysis algorithm should also provide information 
required to evaluate detected cell structures: i.e. the presence of nuclei, their size, colour or 
intensity, the nucleus/cytoplasm ratio, shape properties of nuclei and cytoplasmic contours. 
 Initial experiments indicated that both the cells and the nuclei were successfully 
segmented by the proposed algorithm. The cell segmentation results were positively verified 
by the pathologist. The nuclei segmentation failed in some cases has failed, probably due to 
high cell degradation because the pathological nuclei are bigger and occupy almost the 
whole cell. In the future work, we would like to limit this defect. by running the proposed 
algorithm locally, i.e. independently for every previously detected cell. 

4. CONCLUSIONS 

In this paper the novel technique for segmentation of cells and nuclei based on the 
diffusion driven watershed algorithm is presented. To handle the problems with blurred and 
broken cell membranes and nuclei envelopes, the new concept of the activity image based 
on diffusion model was presented. In watershed segmentation step the activity image 
undergoes a modified watershed algorithm which takes into account the specificity of the 
rescaled activity images. These features were used for proper segmentation of cells and 
nuclei on images from contact endoscopy. 
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Fig.2. The results of cell segmentation (right) of the input images (left). 
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