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MAXIMUM SEPARATION PARTIAL LEAST SQUARES (MSPLS): A NEW 
METHOD FOR CLASSIFICATION IN MICROARRAY EXPERIMENT 

The purpose of the paper is to propose a new method for classification. Our MSPLS method was deduced 
from the classic Partial Least Squares (PLS) algorithm. In this method we applied the Maximum Separation 
Criterion. On the basis of the approach we are able to find such weight vectors that the dispersion between the 
classes is maximal and the dispersion within the classes is minimal. In order to compare the performance of 
classifier we used the following types of dataset – biological and simulated. Error rates and confidence intervals 
were estimated by the jackknife method. 

1. INTRODUCTION 

Prediction, classification and clustering are the basic methods used to analyse and 
interpret microarray data in the microarray experiments. This kind of dataset contains 
vectors of genes expression, which belong to certain classes. Unfortunately, the number of 
vectors is usually much smaller than the number of genes. In this situation the classification 
results can be inadequate. That is the reason why it is so important to decrease the 
dimension of feature space, which could be done either by feature selection or by feature 
extraction. One of the feature extraction methods, which can be used, is the Partial Least 
Squares (PLS) Method. 

In this paper we would like to propose a new method for feature extraction. Our 
method was deduced from the classic Partial Least Squares (PLS). This method was 
proposed by H. Wold (see [10], [11], [12]) and is often applied in chemometrics but it could 
be also applied for classification samples. PLS makes use of the ordinary least squares 
regression steps in the calculation of loadings, scores and regression coefficients. In the 
classic PLS method the objective criterion has the following formula: 

. In this way we are able to find a weight vector for which the 
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X  and the response matrix 
(vector in one dimensional case) Y  is maximal. The covariance between the two elements 
denotes the degree of dependency between them. That is why when we find the weight 
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vector for which covariance between the linear combination feature of matrix X  and the 
response matrix Y  is maximal, we can say that significant coefficients for each feature of 
matrix X  have been found. It means that when we have sample matrix X , which contains 

 samples of n p features, and response matrix Y , we know for which classes these samples 
belong and we can find, for every sample, the weight vector, which denotes significant 
coefficients. So that is the reason why the covariance between and  must be 
maximal. 
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 Unfortunately, this criterion does not provide suitable separation between classes, 
especially when dataset is not linearly separable and variables are high correlated. To 
provide better separation between classes, the objective criterion was modified. We used the 
maximal separation criterion. This criterion has a formula ( B SStr − , where  and  
are between scatter matrix and within scatter matrix respectively. When maximizing this 
criterion matrix  is maximizing and matrix  is minimizing. It means that there is the 
distance between classes but the distance between samples in classes is minimizing. When 
applying this criterion to the classic PLS method, we obtain a new objective criterion. 
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The weight vectors are computed in the same way as in the classic PLS method on the basis 
of matrix X but this matrix is transformed into a new space, which provides maximal 
separation between classes. 

2.  METHODS 

2.1. CRITERION OF MAXIMUM SEPARATION 

In this paper we consider a linear case but this method could be modified for nonlinear 
cases by using kernel function. Let us assume that we have L-classes problem and let 

 where ( ) } d
ni RxCy ∈× ;,....,, {C ,1ix C2X∈ X  is a matrix of sample vectors and 

 is the vector of class labels. Firstly, however we should recall some basic 
facts. Let  and  denote a between scatter matrix and within scatter matrix respectively. 
It means that  and  are given by: 
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where denotes covariance matrix, is a priori probability of appearance of i-th 
class,  means vector for i-th class and 

iΣ ip

0iM M has the following formula: 
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where  denotes the distance between vectors  and . It shows that 
when using the basic properties of trace of matrix and bearing in mind the fact that 

, the right side of formula (4) can be written in the following way:  
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If we assume that  denotes Euclidean distance, it means that 
, it shows that the left side part of formula (4) can be 

written by: 
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Our formula (4) can be written in the following way: 

 )( WB SStry −= . (7) 

This function is called the criterion of maximum separation. When transposing our 
vector X  through our function  to vector XWy T= Y , we can say that the projection of  
and  has the following formula: 
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We get the following criterion function: 
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, when using the Lagrange multiplier method and applying basic properties of the 
eigenvalues criterion function (10), can be written in the following way: 
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where kλ are eigenvalues of the matrix )( WB SS −  and is a number of eigenvalues of 
this matrix.  

d

2.2. NEW ALGORITHM 

By using the maximal separation criterion we were able to design a new algorithm. 
The algorithm is based on classical PLS algorithm (see [10], [11], [12], [9]). It is used for 
two class problem only, but it can be easily generalized for multiclass problem. In our 
algorithm, as well as in the classic one, the objective criterion for constructing components 
is sequentially maximizing the covariance between the response variable and the linear 
combination of the predictors. Thus, we found the weight vector W satisfying the following 
objective criterion: 
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Our MSPLS algorithm can be summarized in the following way: 
1. FOR 1=k  to d  set u  to Y  and DO: 
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9. END FOR 
Next, we calculate regression coefficients by the following formula: 
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These coefficients are used to classification. Because of the fact that, in this paper, we 
are using this method for two class problem, the decision function has the following 
formula: 

 )1sgn( −⋅= QtestXtestY  (15) 

where testX  is matrix of test vectors and testY is the vector of predicted class labels. 

2.3. ESTIMATING ERROR RATES 

In order to estimate error rates for each dataset, we use the Jackknife resampling, 
which is the special case of the bootstrap procedure [4]. We used the Jackknife method as 
follows: we randomly selected a single sample of the test dataset, learned the classifier on 
the remaining samples and classified the chosen sample obtaining the error rate. The error 
rate was equal either to 0, if the sample was classified correctly or to 1, if it was not. This 
procedure has been repeated for 1000 times. Each time, we selected the sample from a full 
set of samples. The bootstrap (jackknife) error rate  was the mean error rate from each 
step. The error rate was as follows: 
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where n was the number of repetitions and  was the error rate in i-th iteration. In 
this paper, we used n being equal to 1000. We used percentiles of the  error distribution 
in order to find the end points of the confidence intervals. We used 1000  values 
estimated in the way given above to estimate the distribution. For the significant level 
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confidence interval was bounded at / 2α  and 1 / 2α−  percentiles, so the confidence interval 
was defined by: 

 ( )2/12/ ; αα −= ppCI  (17) 

where  was 2/αp / 2α  percentile. 

3. EXPERIMENTAL RESULTS 

3.1. DATASETS 

The method described in the previous section was compared with the standard PLS 
algorithm on several simulated DNA microarray datasets. Firstly, we prepared datasets 
consisting of two groups of 15 arrays with 2000 genes. Two datasets IS01, IS05 with 1% 
(20) and 5% (100) differentially expressed genes were generated according to the article by 
Broberg [2], using normal distributions with parameters given in Table 1. Only the last three 
rows represented different expression. 
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Table 1. Means and standard deviations used in IS01, IS05 

Group 1 Group 2 

1μ  1σ  2μ  2σ  
-8 0,2 -8 0,2 

-10 0,4 -10 0,4 
-12 1 -12 1 
-6 0,1 -6,1 0,1 
-8 0,1 -8,5 0,2 

-10 0,4 -11 0,7 
 

We assumed an equal probability of every model from the first three rows for non-
differentially expressed genes and from the second three rows of the table for DEGs. We 
also generated another datasets including two groups of arrays with 21 arrays belonging to 
the first group and 19 arrays to the second one. Each array includes 2000 genes; the 
proportion of DEGs was set equal to 1% that is we had 20 differentially expressed genes in 
these datasets. Firstly, we independently generated each entry of the 2000  matrix from 
the standard normal distribution. Secondly, we added a value of 2 to the first 100 genes in 
the first group to model differentially expressed genes. Thus, first 100 genes in the first 
group were normally distributed with mean 2 and all the elements of the whole matrix were 
stochastically independent. Afterwards, we independently generated 40 random numbers 

 from the standard normal distribution. Then, for the fixed correlation value 

40×

1,...,a a40 ρ  we 
applied the following transformation for each entry of the generated matrix: 

: 1ij j ijx a xρ ρ= + − , where  was the number of gene and  was the 
number of sample, so that for any 

1,..., 2000i =

1i
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2i≠  and j we had ( )1 2
,i j i jxCorr x ρ= . Using the 

procedure described above, we generated training and test datasets called CS02 and CS06, 
with the chosen correlation strength at the level of 0.2 and 0.6 respectively. 

We also compared all of these methods on the leukemia dataset, available at [16]. The 
dataset came from a study of gene expression in two types of acute leukemias: acute 
lybphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The training set 
contained 38 cases (27 ALL and 11 AML) and test dataset contained 34 cases (20 ALL and 
14 AML) both with 7129 genes. 

3.2. RESULTS 

For the comparison of the classification performance on simulated dataset we applied 
exactly the same scheme in each case. Firstly, the dataset was standardized. Next, we built 
the classifier and estimated the error rates by using the jackknife method. The procedure 
varied for the leukemia and the colon datasets. We calculated raw p-values from the t-test, 
then we used 100000 permutations in order to estimate them. Secondly, we controlled FDR 
at level α equal to 0,01. So, for leukemia and colon dataset we chose respectively 861 and 
180 genes for which p-values was less than 0,01. We reduced the original dataset to this 
selected genes. Afterwards, the experiment schemes were exactly the same as in the case of 
the simulation dataset. 
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3.2.1. BIOLOGICAL AND SIMULATED DATA 

The results for the biological data were very satisfactory. For the leukemia dataset our 
classifier did not make any mistake. These results were better than in the case of the classic 
PLS algorithm, where mean error rate equalled 0,027 and the confidence interval was 
[0,026, 0,028]. The details are presented in table 2. 

Table 2. Classification results for the leukemia dataset 

No. sample Class MSPLS PLS Sample no. Class MSPLS PLS 
1 0 0 0 18 0 0 0 
2 0 0 0 19 0 0 0 
3 0 0 0 20 0 0 0 
4 0 0 0 21 1 1 1 
5 0 0 0 22 1 1 1 
6 0 0 0 23 1 1 1 
7 0 0 0 24 1 1 1 
8 0 0 0 25 1 1 1 
9 0 0 0 26 1 1 1 

10 0 0 0 27 1 1 1 
11 0 0 0 28 1 1 1 
12 0 0 0 29 1 1 1 
13 0 0 0 30 1 1 1 
14 0 0 0 31 1 1 0 
15 0 0 0 32 1 1 1 
16 0 0 0 33 1 1 1 
17 0 0 0 34 1 1 1 

 
As far as the colon dataset is concerned, the results were also very good. The mean 

error rate was 0,048 and the confidence interval was [0.048-0.049]. These results were 
better than in the case of the classic PLS, where the mean error rate was 0,104 and the 
confidence interval equalled [0,096-0,104]. The details are presented in table 3. 

Table 3. Classification results for the colon dataset 

No. sample Class MSPLS PLS Sample no. Class MSPLS PLS 
1 0 0 0 17 0 0 0 
2 0 0 0 18 0 0 0 
3 0 0 0 19 0 0 0 
4 0 0 0 20 0 0 0 
5 0 0 0 21 1 1 1 
6 0 0 0 22 1 1 1 
7 0 0 0 23 1 1 1 
8 0 0 0 24 1 1 0 
9 0 0 0 25 1 1 1 

10 0 0 0 26 1 1 1 
11 0 0 0 27 1 1 0 
12 0 0 0 28 1 1 1 
13 0 0 1 29 1 1 1 
14 0 0 0 30 1 1 1 
15 0 0 0 31 1 1 1 
16 0 0 0     
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We compared the performance of classification for four simulated datasets. For the 
simulated dataset IS01 and IS05 we received very good results. For each number of 
components, every sample was classified properly. For the next two simulated datasets 
CS02 and CS06 the results were not as good as in the case of the IS datasets. In the CS06 
case, the mean error rate was 0.075 in the confidence interval [0,074; 0,076]. For CS02 
dataset the results were even worse. The mean error rate equaled 0.15 in the confidence 
interval [0.14; 0.16]. When comparing these results with the ones which we received after 
exactly the same procedure for the classic PLS algorithm, it came out that the results were 
far better for the new algorithm. The error rates were smaller about 5%. The confidence 
interval was also much smaller. For the PLS algorithm, the length of the confidence interval 
was three times bigger than for the MSPLS algorithm. 

4. CONCLUSION 

We have introduced statistical analysis method for the classification in microarray 
experiment. The method was able to distinguish between normal and tumor samples for two 
different biological microarray data and other four different simulated microarray data. Our 
methods used a Maximum Separation Criterion to find the weights vector so that the 
dispersion between the classes would be maximal, whereas the dispersion within the class- 
minimum. The Proposed method was not restricted to any specific microarray technology. 
For the computable reasons we made pre-selection by choosing genes with the smallest  
p-values. The p-values were estimated by using raw p-values method (see [3]). By 
comparing our method with the classic partial Least Squares Algorithm, it was possible to 
show that the classification performance estimated by the Jackknife procedure was 
significantly higher. The restriction of only one dimensional class vector in the dataset was 
the main disadvantage. In the future, we would like to propose a multivariate algorithm and 
a new kernel based MSPLS algorithm. 
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