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Characteristic points detection such as beginnings and ends of P-wave, T-wave or QRS complex is one of 
primary aims in automated analysis of ECG signal. The paper presents one possible approach based on Bayesian 
inference to design of kernel based classifier. The classification function is constructed using the probability 
distribution function of standard normal distribution and independent Gaussian random variables. The 
parameters of such variables are computed using iterative Expectation-Maximization algorithm. This approach is 
used to calculate parameters of classification function to modelling Takagi-Sugeno-Kang fuzzy systems. 
Numerical experiment of characteristic points detection in ECG signal using CTS database is also presented. 

1. INTRODUCTION 

The formulation and properties of an electrical impulse through the heart muscle result 
in time-varying potentials on the surface of the human body, which are known as the ECG 
signals. The signal represents various activities of the heart. A typical ECG signal is 
indicated in Figure 1. As can be seen from it, the dominant morphologies are the P, QRS 
and T waves. Occasionally a U-wave will be present immediately after the T-wave, the 
genesis of which is uncertain. The P-wave represents atria activation; the QRS complex 
represents ventricular activation or depolarisation. An initial downward deflection after the 
P-wave is termed as ‘Q’, the dominant upward deflection is ‘R’ and the terminal part is 
denoted as ‘S’. The T-wave represents ventricular recovery or depolarisation. The ST 
segment, the T-wave and the U-wave together represent the total duration of ventricular 
recovery. The ST segment represents the greater part of ventricular depolarisation. The ST 
segment usually merges smoothly and imperceptibly with the T-wave [4]. 

The graph of ECG signal, known as the electrocardiogram, shows the results of nerve 
impulse stimuli by the heart, as the current is diffused around the surface of the body. The 
current at the body surface will be built on the voltage drop, which is a couple of μV to mV 
with impulse variations. This is very small amplitude of impulse that needs to be amplified 
to an amount, which is large enough for recording and displaying. Usually, an 
electrocardiograph requires an amplification of a couple of thousand times. 
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Fig.1. Schematic representation of normal ECG 

The electrocardiogram is a useful, simple tool that may aid in the diagnosis of heart 
diseases. Many kinds of abnormalities can often be seen on an ECG. They include a 
previous myocardial infarction, an abnormal heart rhythm (arrhythmia), an inadequate 
supply of blood and oxygen to the heart (ischemia), and excessive thickening (hypertrophy) 
of the heart's muscular walls. Certain abnormalities on ECG can also suggest aneurysms that 
develop in weak areas of the heart's walls. Aneurysms may result from a heart attack. If the 
rhythm is abnormal (too fast, too slow, or irregular), the ECG may also indicate where in 
the heart the abnormal rhythm starts. 

Typical ECG findings include diffuse concave-upward ST-segment elevation and, 
occasionally, PR-segment depression. In order to perform these measurements it is 
necessary to locate characteristic points such as beginnings and ends of P-wave, T-wave or 
QRS complex on the timeline. However, this is difficult task because of the presence of 
noise. 

Usually in case of electrocardiographic (ECG) signal, two principal sources of noise 
can be distinguished: the ‘technical’ caused by the physical parameters of the recording 
equipment and the ‘physiological’ representing the bioelectrical activity of living cells not 
belonging to the area of diagnostic interest (also called background activity). Both sources 
produce noise of random occurrence, overlapping the ECG signal in both time and 
frequency domains [1]. 

Moreover detection of characteristic points such as beginnings and ends of P-wave, T-
wave or QRS complex is difficult because the ECG waveform is a non-stationary signal, 
even when observed in a perfectly healthy normal subject. These non-stationarities are 
severe in case of abnormal subjects due to the association of transient phenomena. 

The paper presents the theoretical approach to the problem of characteristic points 
detection which incorporates Bayesian inference to design of kernel based classifier. The 
classification function is constructed using the probability distribution function of standard 
normal distribution and independent Gaussian random variables. The parameters of such 
variables are computed using iterative Expectation-Maximization algorithm. This approach 
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is used to calculate parameters of classification function to modelling Takagi-Sugeno-Kang 
fuzzy systems[5], [6]. The paper also presents numerical experiment of characteristic points 
detection in ECG signal using CTS database [8]. 

2. DETECTION ALGORITHM 

2.1. CLASSIFIER DESIGN METHOD 

The classification task aims at inferring a functional relation Υ→Χ:f  between 
numerical input data and categorical output values. The design of classifier is based on finite 
training set . Usually the inputs are d-dimensional real 
vectors,  and outputs might be integer values, representing class labels. Usually the 
function f is assumed to have a fixed structure and to depend on a vector of parameters . 
In this case the goal becomes to estimate the parameters from the training data.  
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In this paper the two-class case will be taken into account, hence , and the 
classification is based on function of form 
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and  is vector of fixed base functions. This is called 
generalized linear model, as in 

T
Nhhh ))(,),(),(()( 21 xxxxh K=

[2], [3].  
The main goal of the classifier design procedure is to achieve high generalization 

ability [7], as to avoid over-fitting to training data, but still to be able to capture main 
behaviour of input-output relationship. This may be obtained by controlling complexity of 
learned function, using the variety of tools. In the latter part of paper the Bayesian approach 
to classifier design will be presented, in order to find sparse solutions (having only a few 
non-zero coefficients), which lead to good generalization ability. As the base functions, the 
values of kernel functions will be used: 
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As in [3], the classification rule is defined as: 

  (4) ⎟
⎠

⎞
⎜
⎝

⎛
+Φ== ∑

=

N

i
iiKxyP

1
θ0 ),()|1( xxββ

 173



MEDICAL MONITORING SYSTEMS 

and . The consequence of classification function form is the 
need of setting values of parameters  and θ . The estimates of 

)|1(1)|0( xyPxyP =−==
β iβ  are evaluated using 

Bayesian inference. The Laplace distribution with parameter λ  is taken as a common prior 
distribution of iβ  and the parameters are assumed to be independent. This leads to learning 
procedure, where the posterior probability of correct classification is maximized. The vector 

 of hidden variables is introduced: ), Nz,( 1z K=z
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where  are independent Gaussian variables jw ),0( jN σ . This is generalization of model 
described in [2], where all variables  have common standard deviation. The estimation of 
parameters 

jw

iβ  is performed by Expectation-Maximization procedure. In the E-step the 
expected value of  is computed: β
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(where the upper index denotes successive iteration number) and next, in the M-step 
the value of  is maximized with respect to : )ˆ|( tQ ββ tβ̂
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for arbitrarily chosen value of ε . 

2.2. MODELLING TAKAGI-SUGENO-KANG SYSTEM 

The procedure described in the previous section may be applied to modelling Takagi-
Sugeno-Kang (TSK) fuzzy system [5], [6]. In this case, the set of input variables  is 
clustered using fuzzy c-mean clustering assuming that each of c clusters corresponds to a 

dℜ∈x
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fuzzy if-then rule in the TSK system. For each cluster the classifier is designed using input 
and output data and the overall output of TSK system is computed as aggregation of outputs 
of individual classifiers. The values of jσ  for each classifier can be established by following 
formula: 

 , (11) ( ) },...,2,1{},...,2,1{)()(2 ciNjxA j
i

j ∈∀∈∀=σ p−

where  is the membership of input value  in ith cluster and )()(
j

i xA jx ),0( +∞∈p  is the 
parameter determining the influence of this membership on uncertainty about the single 
input data. The output of TSK system is still interpreted as a posterior probability of  
belonging to class 1. 

x

2.3. APPLICATION TO CHARACTERISTIC POINTS DETECTION 

The algorithm described above can be applied to detection of characteristic points such 
as beginnings and ends of P-wave, T-wave or QRS complex on the timeline of ECG signal. 
The main idea of using this classification procedure is to decide whether or not, does the 
investigated sample appear to be the specific characteristic point. In this case the input 
vectors are formed from the finite time window around this sample: 

 ))(,),(,(( Mnununun ),M +−= KKx , (12) 

where u(n) is time series representing digital ECG signal in single channel and M 
determines radius of time window. 

3. NUMERICAL EXPERIMENTS 

The experiment was performed using data from CTS database of electrocardiographic 
signals [8]. Only signal from first channel was used and interfered Gaussian noise with 
zero-mean and signal to noise ratio equal 2.5. The radius M of time window was set to 25 
and the polynomial kernel function was chosen: 
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with r=1 and 121 ==== dθθθ K . The parameters λ  (Laplace distribution parameter) 
and p (the parameter determining the influence of the membership on uncertainty about the 
single input data) was determined during the learning phase using cross-validation method.  

The experiment was performed individually for signals ANE20000, ANE20001, 
ANE20002 from CTS database. In each case the learning set and test set contained the same 
signals disturbed by white Gaussian noise independent from each other. In the learning 
phase of the experiment classifier was trained on single ECG signal from database disturbed 
by noise. Such constructed classifier was used to locate characteristic points on the same 

 175



MEDICAL MONITORING SYSTEMS 

 176 

single ECG signal disturbed by noise independent from the one in the learning phase. For 
the single ECG signal the experiment was repeated 200 times and the results was averaged. 
Performance of the algorithm was empirically estimated by averaged durations of the P-
wave and QRS complex respectively, based on beginnings and endings determined on test 
set. Table 1 presents results of experiment. 

Table 1. Results of experiment 

 P-wave duration [ms] QRS complex duration [ms] 
reference value 126.0 94.0 ANE20000 
computed value 107.8 98.4 
reference value 142.0 94.0 ANE20001 
computed value 117.4 98.2 
reference value 102.0 94.0 ANE20002 
computed value 97.2 100.8 

4. CONCLUSIONS 

The paper presents the theoretical approach to the problem of characteristic points 
detection which incorporates Bayesian inference to design of kernel based classifier for 
modelling Takagi-Sugeno-Kang fuzzy systems. As can be seen in Table 1, the results of 
numerical experiments show usefulness of the presented method for the characteristic points 
detection in ECG signal, because the computed values are similar to the reference value. 

It seems desirable performing experiments aiming to compare performance of the 
algorithm using other kernel functions as well as to investigate the influence of the M 
parameter, which determines dimension of input vector. The interesting question also is the 
behaviour of the method in the presence of different type of noise, including impulse 
disturbances. It is worth noting that this method only uses information from single channel 
of ECG signal. That is why the generalized version of this approach which incorporates all 
channels will be developed in future. 

This research was supported by the Polish Ministry of Education and Science as the 
research project „Wiarygodne metody wyznaczania punktów charakterystycznych sygnału 
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