PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modele charakterystyk materiałów magnetycznie miękkich stosowanych w budowie czujników

Autorzy
Identyfikatory
Warianty tytułu
EN
Models of characteristics of soft magnetic materials for sensor applications
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono nowe modele właściwości materiałów magnetycznie miękkich, wykorzystujące model Jilesa-Athertona-Sablika. Autor zaproponował także nowy opis zmian średniej energii koniecznej do pokonania zaczepu ściany domenowej oraz przedstawił proces dwuetapowej optymalizacji, która umożliwia wyznaczenie parametrów opracowanych modeli. Praca zawiera także przegląd znanych modeli, umożliwiających powiązanie wybranych właściwości fizycznych magnetyka z jego charakterystykami magneto-mechanicznymi, ważnymi z technicznego punktu widzenia. Weryfikacja przedstawionych w pracy nowych modeli procesu magnesowania materiałów magnetycznie miękkich została przeprowadzona w odniesieniu do uzyskanych na drodze eksperymentalnej charakterystyk magnetyków, zróżnicowanych zarówno ze względu na średnią energię, anizotropii materiału, wartość współczynnika magnetostrykcji nasycenia materiału, jak i strukturę materiałów. W przypadku pętli histerezy magnetycznej B(H) oraz zależności przenikalności amplitudowej od wartości pola magnesującego μa(H) stwierdzono zgodność kształtu charakterystyk oraz wartości modelowych z danymi eksperymentalnymi, zarówno w odniesieniu do materiałów izotropowych, jak i anizotropowych. Zastosowanie przedstawionego w pracy opisu dynamicznego procesu magnesowania umożliwiło także uzyskanie zgodności wyników modelowania z wynikami badań eksperymentalnych. Jakość opracowanego modelu została potwierdzona parametrami statystycznymi. Badania w zakresie modelowania wpływu temperatury na charakterystyki magnetyczne anizotropowego stopu o składzie [Fe40Ni38Mo4B18] przeprowadzono w temperaturach, w których najczęściej pracują urządzenia powszechnego użytku. Także w przypadku charakterystyk temperaturowych zaobserwowano zgodność wyników modelowania z danymi eksperymentalnymi, co potwierdzono parametrami statystycznymi. Weryfikacje, opisu modelowego wpływu naprężeń wywołanych silami zewnętrznymi na charakterystyki magnetyczne stopu o składzie [Fe40Ni38Mo4B18] zrealizowano w odniesieniu zarówno do charakterystyk B(H)σ, jak i B(σ)Hm. Charakterystyki te determinują charakterystyki przetwarzania magneto-mechanicznych czujników, wykorzystujących efekt magnetosprężysty i dlatego są szczególnie ważne z punktu widzenia modelowania właściwości użytkowych tych czujników. W odniesieniu do charakterystyk B(H)σ wartość współczynnika determinacji R2 przekracza 0,99, przy wszystkich wartościach naprężeń ściskających σ w przedziale od 0 do 10 MPa. Przedstawione w pracy modele charakterystyk magneto-mechanicznych czujników do pomiaru siły oraz czujników transduktorowych do pomiaru stałego pola magnetycznego mogą być wykorzystane do celów technicznych. Opracowany model czujnika magnetosprężystego i czujnika transduktorowego umożliwia wyznaczenie optymalnych wartości częstotliwości [f] i amplitudy Hm pola magnesującego rdzeni z materiału magnetycznie miękkiego. Prezentowane w pracy wyniki modelowania funkcjonalnych charakterystyk czujników magnetosprężystych i transduktorowych nie były do tej pory opisane w literaturze. Przedstawiony przez autora nowy model charakterystyk magnesowania materiałów magnetycznie miękkich umożliwia techniczne zastosowanie tego typu modelowania w konstrukcji czujników magneto-mechanicznych.
EN
The dissertation presents new models of properties of soft magnetic materials. These models are based on the Jiles-Atherton-Sablik model of the magnetization process. A description of the optimization process, which allows to determine the parameters of the model, is also provided. A review of the most important models connecting physical properties of soft magnetic materials with their magneto-mechanical characteristics has also been included. Experimental verification of the presented models of the magnetization process of soft magnetic materials was performed for characteristics of diverse materials with regard to their anisotropy energy, saturation magnetostriction as well as structure. A high level of correspondence between the experimental results and the results of modelling was achieved for magnetic hysteresis loops B(H) and magnetic field dependences of permeability μa(H). This good conformity was indicated for both isotropic and anisotropic magnetic materials. Verification of modelling of the dynamic hysteresis loop also indicated a high level of conformity between experimental and modelling results. The accordance was quantitatively confirmed by statistical analyses. A study of modelling of temperature dependence of the [Fe40Ni38Mo4B18] amorphous alloy magnetization process was performed in the temperature range typically used for technical operations. Also in this case, a high level of conformity between experimental results and the results of modelling was achieved. Verification of the magnetoelastic characteristics model of [Fe40Ni38Mo4B18] amorphous alloy was carried out both for B(H)σ and B(σ)H characteristics. These characteristics are particularly important due to the fact that they determine functional characteristics of the magneto-mechanical sensors utilizing magnetoelastic effect. For B(H)σ characteristics, the coefficient of determination R2 exceeds 0.99, for all applied stress in the range from 0 to 10 MPa. The presented models of the characteristics of magneto-mechanical force sensors and magnetic fields fluxgate sensors confirmed the applicability of this modelling methodology for technical purposes. The presented model of the magnetoelastic force sensor, as well as the fluxgate sensor allows to calculate optimal values for magnetizing field amplitude of the core, as well as its frequency. Such results were not presented in literature hitherto, due to the lack of an accurate magnetization process description. The magnetization process description presented in this dissertation bridges this gap and allows to apply the soft magnetic materials magnetization process description in the development of sensors.
Rocznik
Tom
Strony
3--85
Opis fizyczny
Bibliogr. 220 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Abramowicz H.. Jak analizować wyniki pomiarów?, PWN, Warszawa 1992.
  • [2] Aczel A.D.: Statystyka w zarządzaniu, PWN, Warszawa, 2000.
  • [3] Adly A.A., Abd-El-Hafiz S.K.: Using neural networks in the identification of Preisach-type hysteresis models, IEEE Trans. Magn. 34 (1998) 629.
  • [4] Ambatiello A., Fabian K., Hoffmann V.: Magnetic domain structure of multidomain magnetite as a function of temperature: observation by Kerr microscopy, Physics of the Earth and Planetary Interiors 112 1999 55.
  • [5] Amor A.B., Budde T., Gatzen H.H.: A Magnetoelastic microtransformer-based micro-strain gauge, Sensors and Actuators A 129 (2006) 41.
  • [6] Ando B., Ascia A., Baglio S., Bulsara A.R., Trigona C., In V.: RTD fluxgate performance for application in magnetic label-based bioassay: preliminary results, Proc. Int. Conf. 28th IEEE EMBS Annual International Conference, New York, USA, 30 Aug.-3 Sept. 2006, p. 5060.
  • [7] Andrei P., Caltun O., Stancu A.: Differential phenomenological models for the magnetization processes in soft MnZn ferrites, IEEE Trans. Magn. 34 (1998) 231.
  • [8] Arai K.I., Tsuya N.: Change of permeability in amorphous ferromagnetic ribbons by heat treatment, IEEE Trans. Magn. 13 (1977) 1550.
  • [9] Atherton D.L.: A mean field Stoner-Wohlfarth hysteresis model, IEEE Trans. Magn. 26 (1990) 3059.
  • [10] Augustyniak B.: Correlation between acoustic emission and magnetic and mechanical Barkhausen effects, J. Magn. Magn. Mater. 196-197 (1999) 799.
  • [11] Augustyniak B.: Zjawiska magnetosprężyste i ich wykorzystanie w nieniszczących badaniach materiałów, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2003.
  • [12] Augustyniak B., Degauąue J.: New approach to hysteresis process investigation using mechanical and magnetic Barkhausen effects, J. Magn. Magn. Mater. 140-144 (1995) 187-189.
  • [13] Baca G., Yalenzuela R., Escobar M.A., Magana L.F.: Temperature dependence of the critical magnetic field in polycrystalline ferrites, J. Appl. Phys. 57 (1985) 4183.
  • [14] Baldwin J.A.: Rayleigh hysteresis-a new look at an old law, IEEE Trans. Magn. 14 (1978) 81.
  • [15] Barandiaran J.M., Gutierrez J.: Magnetoelastic sensors based on soft amorphous magnetic alloys, Sensors and Actuators A59 (1997) 38.
  • [16] Bernard Y., Mendes E., Bouillault F.: Dynamic hysteresis modeling based on preisach model, IEEE Trans. Magn. 38 (2002) 885.
  • [17] Bernieri A., Betta G., Ferrigno L., Laracca M.: An automated self-calibrated instrument for nondestructive testing on conductive materials, IEEE Trans. Instr. Meas. 53 (2004) 955.
  • [18] Bernieri A., Betta G., Rubinacci G., Yillone F.: A measurement system based on magnetic sensors for nondestructive testing, IEEE Trans. Instr. Meas. 49 (2000) 455.
  • [19] Bertotti G.. Dynamic generalization of the scalar Preisach model of hysteresis, IEEE Trans. Magn. 28 (1992) 2599.
  • [20] Bhattacharyya M.K., Gili H.S., Simmons R.F.: Determination of overwrite specification in thin-film head/disk systems, IEEE Trans. Magn. 25 (1989) 4479.
  • [21] Bieńkowski A., Szewczyk R.: The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors, Sensors and Actuators A 113 (2004) 270.
  • [22] Bieńkowski A.: Magnetoelastic Villari effect in Mn-Zn ferrites, J. Magn. Magn. Mater 215-216 (2000) 231.
  • [23] Bieńkowski A.: Magnetosprężyste zjawisko Villariego w ferrytach i możliwość jego wykorzystania w budowie przetworników naprężeń i sił, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1995.
  • [24] Bieńkowski A., Kaczkowski Z., Szewczyk R.: Magnetostrictive properties of Ni-ferrite, Czechoslovak Journal of Physics 52 (2002) A85.
  • [25] Bieńkowski A., Kulikowski J.: Efect of stress on the magnetostriction of Ni-Zn(Co) fer-rites, J. Magn. Magn. Mater. 101 (1991) 122.
  • [26] Bieńkowski A., Szewczyk R.: Magnetosprężyste sensory naprężeń i sił - nowe możliwości, Pomiary Automatyka Robotyka 9 (2002) 14.
  • [27] Bieńkowski A., Szewczyk R., Kulik T., Ferenc J., Salach J.. Magnetoelastic properties of HITPERM-type Fe415Co41.5Cu1Nb3B13 nanocrystalline alloy, J. Magn. Magn. Mater 304 (2006) e624.
  • [28] Bieńkowski A., Szewczyk R., Salach J.: Pomiary magnetosprężystych charakterystyk materiałów magnetycznie miękkich, Przegląd Elektrotechniczny l (2007) 74.
  • [29] Bozorth R.M.: Ferromagnetism, D. van Nostrood, New York, 1956.
  • [30] Brandt S.: Analiza danych, PWN, Warszawa, 1998.
  • [31] Brokate M., Delia Torre E.: The wiping-out property of the moving model, IEEE Trans. Magn. 27 (1991) 3811.
  • [32] Bue M.L., Bertotti G.: Temperature dependence of hysteresis loops in non-oriented SiFe alloys, J. Magn. Magn. Mater 160 (1996) 51.
  • [33] Buttino G., Poppi M.: Dependence on the temperature of magnetic anisotropies in Fe--based alloys of Finemet, J. Magn. Magn. Mater. 170 (1997) 211.
  • [34] Bydzovsky J., Kollar M., Jancarik V., Svec P., Kraus L.: Strain sensor for civil engineering application based on CoFeCrSiB amorphous ribbons, Czechoslovak Journal of Physics 52A (2002) A117.
  • [35] Bydzovsky J., Kraus L., Svecc P., Pasquale M.: Magnetoelastic strain sensors for the outdoors application, J. Magn. Magn. Mater. 272-276 (2004) e1743.
  • [36] Cai Q.Y., Grimes C.A.: A remote query magnetoelastic pH sensor, Sensors and Actuators B 71 (2000) 112.
  • [37] Calkins F.T., Smith R.C., Flatau A.B.: Energy-based hysteresis model for magnetostrictive transducers, IEEE Trans. Magn. 36 (2000) 429.
  • [38] Chan J.H., Vladimirescu A., Gao X.C., Liebmann P, Yalainis J.: Nonlinear Transformer Model for Circuit Simulation, IEEE Transactions on Computer-Aided Design l (1991) 476.
  • [39] Chin E.L., Jong-Bi W., Ching-Lien H., Chi-Jen H.: New model for transformer saturation characteristics by including hysteresis loops, IEEE Trans. Magn. 25 (1989) 2706.
  • [40] Chiriac H., Ciobotaru I., Mohorianu S.: Magnetic and magnetoelastic properties of amorphous ribbons, IEEE Trans. Magn. 30 (1994) 518.
  • [41] Chiriac H., Pletea M., Hristoforou E.: Fe-based amorphous thin film as a magnetoelastic sensor material, Sensors and Actuators 81 (2000) 166.
  • [42] Chwastek K., Szczygłowski J.: Identification of a hysteresis model parameters with genetic algorithms, Mathematics and Computers in Simulation 71 (2006) 206.
  • [43] Cirrincione M., Miceli R., Galluzzo G.R., Trapanese M.: Preisach function identification by neural networks, IEEE Trans. Magn. 38 (2002) 2421.
  • [44] Claycomb J.R., Brazdeikis A., Le M., Yarbrough R.A., Gogoshin G., Miller J.H.: Non-destructive testing of PEM fuel cells, IEEE Trans. Appl. Supercond. 13 (2003) 211.
  • [45] Culity B.D.: Introduction to magnetic materials, Addison Wesley, 1972.
  • [46] Davidson R.J., Charap S.H.: Combined vector hysteresis models and applications, IEEE Trans. Magn. 32 (1996) 4198.
  • [47] Deane J.H.B.: Modeling the dynamics of nonlinear inductor circuits, IEEE Trans. Magn. 30 (1994) 2795.
  • [48] Devine M.K., Jiles D.C.: Magnetomechanical effect in nickel and cobalt, J. Appl. Phys. 81 (1997)5603.
  • [49] Dobosz M.: Wspomagana komputerowo statystyczna analiza wyników badań, EXIT, Warszawa, 2001.
  • [50] Drahor M.G., Kurtulmus T.O., Berge M.A., Hartmann M., Speidel M.A.: Magnetic imaging and electrical resistivity tomography studium in a Roman military installation fund in Satala archeological site, northeastern Anatolia, Turkey, Journal of Archeological Science 35 (2008) 259.
  • [51] Drljaca P.M., Kejik P., Vincent F., Piguet D., Popovic R.S.: Low-power 2-D fully integrated CMOS fluxgate magnetometer, IEEE Sensors Journal 5 (2005) 909.
  • [52] Dunajski Z.: Biomagnetyzm, WKŁ, Warszawa,1990.
  • [53] El-Sharbiny M.K.: Representation of magnetic characteristics by a sum of exponentials, IEEE Trans. Magn. 9 (1973) 60.
  • [54] Escobar M.A., Magana L.F., Valenzuela R.: The friction and the energy term in the bulget wall Globus model, J. Appl. Phys. 53 (1982) 2692.
  • [55] Fish G., Ramanan V, Hasegawa R., Diebold A.: Stability of high frequency magnetic properties of metallic glasses, IEEE Trans. Magn. 19 (1983) 1937.
  • [56] Floc'h M., Loaec J., Globus A., Pascard H.: Effect of the hydrostatic pressure on the coercive force of polycrystalline garnets, IEEE Trans. Magn. 17 (1981) 1218.
  • [57] Floch M., Loaec J., Pascard H., Globus A.: Effect of pressure on soft magnetic materials, IEEE Trans. Magn. 17 (1981) 3129.
  • [58] Flohrer S., Schaefer R., McCord J., Roth S., Schultz L., Herzer G.: Magnetization loss and domain refinement in nanocrystalline, tape wound cores, Acta Materialia 54 (2006) 3253.
  • [59] Friedman G., Mayergoyz I.D.: Stoner-Wohlfarth hysteresis model with stochastic input as a model of viscosity in magnetic materials, IEEE Trans. Magn. 28 (1992) 2262.
  • [60] Gao X., Yang W., Pang P., Liao S., Cai Q, Zeng K., Grimes C.A.: A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples, Sensors and Actuators B 128 (2007) 161.
  • [61] Gaunt P.: Domain wall pinning at random inhomogeneities, IEEE Trans. Magn. 19 (1983) 2030.
  • [62] Ginzburg V.B.: The calculation of magnetization curves and magnetic loops for a simplified model hysteresis of a ferromagnetic body, IEEE Trans. Magn. 12 (1976) 119.
  • [63] Globus A.: Some physical consideration about the domain wall size. Theory of magnetization mechanism, J. de Physique Cl (1977) Cl-1.
  • [64] Goldman A.: Modern Ferrite Technology, Springer, 2005.
  • [65] Gordon D., Brown R., Haben J.: Methods for measuring the magnetic field, IEEE Trans. Magn. 8 (1972) 48.
  • [66] Grimes C.A., Jain M.K., Singh R.S., Cai Q., Mason A., Takahata K., Gianchandani Y.: Magnetoelastic microsensors for environmental monitoring, Proc. 14th IEEE International Conference on Micro-Electro-Mechanical Systems, MEMS 2001 Interlaken, Switzerland, 21-25 Jan 2001.
  • [67] Grimes C.A., Kouzoudis D., Ong K.G., Crump R.: Thin-film mahnetoelastic sensors for remote query biomedical monitoring, Biomedical microdevices 2 (1999) 51.
  • [68] Grohs P Hempel K.A.: Nearly ideal Stoner-Wohlfarth behavior of coprecipitated barium ferrite powder with reduced packing density, IEEE Trans. Magn. 20 (1984) 1633.
  • [69] Hasegawa R.: Soft magnetic properties of metallic glasses, J. Magn. Mater. 41 (1984) 79-85.
  • [70] He L., Chen C.: Effect of temperature-dependent shape anisotropy on coercivity for aligned Stoner-Wohlfarth soft ferromagnets, Phys. Rev B 75 (2007) 184424.
  • [71] Hernandez E.D.M., Muranaka C.S., Cardoso J.R.: Identification of the Jiles-Atherton model parameters using random and deterministic searches, Physica B 275 (2000) 212.
  • [72] Hinz G., Vigt H.: Magnetoelastic Sensors, ed. Gopel W., Hesse J., Zemel N., VCH, Weinheim, 1989.
  • [73] Hison C., Ausanio G., Barone A.C., Lannotti V., Pepe E., Lanotte L.: Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm, Sensors and Actuators A 125 (2005) 10.
  • [74] IEC Standard 404-2/3.
  • [75] Izydorczyk J.: Extraction of Jiles and Atherton parameters of ferrite from initial magnetization curves, J. Magn. Magn. Mater 302 (2006) 517
  • [76] Jatau J.A., Della Torre E.. The effect of curvature on domain wall energy and thickness, IEEE Trans. Magn. 30 (1994) 4927
  • [77] Jiles D.C., Atherton D.: Theory of ferromagnetic hysteresis, J. Appl. Phys. 55 (1984) 2115.
  • [78] Jiles D.C., Atherton D.: Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater 61 (1986) 48.
  • [79] Jiles D.C.: Frequency dependence of hysteresis curves in „non-conducting" magnetic materials, IEEE Trans. Magn. 29 (1993) 3490.
  • [80] Jiles D.C.: Introduction to Magnetism and Magnetic Maerials, Chapman&Hall, London 1998.
  • [81] Jiles D.C.: Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media, IEEE Trans. Magn. 30 (1994) 4326.
  • [82] Jiles D.C.: Introduction to the electronic properties of materials, Introduction to the Electronic Properties of Materials, Nelson Thornes Publishers, London, 2001.
  • [83] Jiles D.C., Atherton D.L.: Ferromagnetic hysteresis, IEEE Trans. Magn. 19 (1983) 2183.
  • [84] Jiles D.C., Devine M.K.: Recent developments in modeling of the stress devivative of magnetization in ferromagnetic materials, J. Appl. Phys. 76 (1994) 7015.
  • [85] Jiles D.C., Ramesh A., Shi Y., Fang X.. Application of the anisotropic extension of the theory of hysteresis to the magnetization curves of crystalline and textured magnetic materials, IEEE Trans. Magn. 33 (1997) 3961.
  • [86] Jiles D.C., Thoelke J.B.: Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops, IEEE Trans. Magn. 25 (1989) 3928.
  • [87] Jiles D.C., Thoelke J.B., Devine M.K.: Numerical determination of hysteresis parameters for the modeling of mangetic properties using the theory of ferromagnetic hysteresis, IEEE Trans. Magn. 28 (1992) 27.
  • [88] Johnson F., Hughes P., Gallagher R., Laughlin D.E., McHenry M.E., Willard M.A., Harris V.: Structure and thermomagnetic properties of new FeCo-based nanocrystalline ferromagnets, IEEE Trans. Magn. 37 (2001) 2261.
  • [89] Johnson M.T., Yisser E.G.: A coherent model for the complex permeability in polycrystalline ferrites, IEEE Trans. Magn. 26 (1990) 1987.
  • [90] Kaczkowski Z.: Materiały piezomagnetyczne i ich zastosowanie, IF PAN-PWN, Warszawa, 1978.
  • [91] Kaczkowski Z.: Piezomagnetic properties of the Ni-Mn-Co-Cu ferrites in the range of anisotropy compensation, Journal de Physique 38 (1977) Cl-203.
  • [92] Kalincsak Z., Takacs J., Yertesy G., Gasparics A.: Local structure and eddy current loss on the surface of carbon-steels in the vicinity of laser marking, Czechoslovak Journal of Physics 54 (2004) 687.
  • [93] Kaluza F., Gruger A., Gruger H.: New and future applications of fluxgate sensors, Sensors and Actuators A 106 (2003) 48.
  • [94] Kaneyoshi T. Introduction to amorphous magnets, World Scientific, Singapore, 1992.
  • [95] Kaul S.N.: Detailed magnetization study of an amorphous ferromagnet, Phys. Rev. B, 24 (1981) 6550.
  • [96] Kim K. S.: Low temperature magnetization in nanocrystalline Fe88Zr7B4Cu1 alloy, IEEE Trans. Magn. 29 (1993) 2679.
  • [97] Kis P., Ivanyi A.: Parameter identification of Jiles Atherton model with nonlinear least square method, Physica B 343 (2004) 59.
  • [98] Kittel C.: Wstęp do fizyki ciała stałego, PWN, Warszawa, 1999.
  • [99] Kolano R., Gawior W.W., Wójcik N., Kuźmiński M.: Induced transverse magnetic anisotropy in Co-based amorphous alloys with different values of the saturation induction, J. Magn. Magn. Mater. 140-144 (1995) 343.
  • [100] Kolano-Burian A., Kolano R., Szynowski J., Varga L.K.: Induced magnetic anisotropy in Co-doped Finemet-type nanocrystalline materials, J. Magn. Magn. Mater. 320 (2008) e758.
  • [101] Konc M., Spisak P., Kollar P., Sovak P., Dusa O.: Temperature dependence of the magnetization and of the other physical properties of rapidly quenched amorphous CoB alloys, IEEE Trans. Magn. 30 (1994) 524.
  • [102] Kontrolny tensometryczny czujnik siły CL 14, ZEP-WN, 2007
  • [103] Kowalczyk M., Ferenc J., Liang X.B., Kulik T.: Magnetic properties of HITPERM-type alloys at high temperature, J. Magn. Magn. Mater. 304 (2006) e651.
  • [104] Kraus L., Svec P., Bydzovsky J.: Amorphous CoFeCrSiB ribbon for strain sensing application, J. Magn. Magn. Mater. 242-245 (2002) 241.
  • [105] Kronmüller H.: Magnetization processes and the microstructure in amorphous metals, J. Phys. Colloques 41 (1980) C8-618.
  • [106] Ktena A., Champ S.H.: Vector Preisach modeling and recording applications, IEEE Trans. Magn. 29 (1993) 3661.
  • [107] Kucuk I.: Prediction of hysteresis loop in magnetic cores using neural network and genetic algorithm, J. Magn. Magn. Mater. 305 (2006) 423.
  • [108] Kunz W., Hilzinger H.R.: Temperature dependence of permeability in amorphous alloys, IEEE Trans. Magn. 17 (1981) 2695.
  • [109] Kvasnica B., Kundracik F.: Fitting experimental anhysteretic curves of ferromagnetic materials and investigation of the effect of temperature and tensile stress, J. Magn. Magn. Mater. 162 (1996) 43.
  • [110] Kwun H.: Investigation on the dependence of Barkhausen noise on stress and the angle between the stress and magnetization direction, J. Magn. Magn. Mater 49 (1985) 235.
  • [111] Lawrence D.: Handbook of genetic algorithms, Van Nostrand Reinhold, 1991.
  • [112] Lederer D., Igarashit H., Kost A., Honma T.: On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics, IEEE Trans. Magn. 35 (1999) 1211.
  • [113] Leite J.Y., Sadowski N., Kuo-Peng P., Batistela N.J., Bastos J.P.A.: The irverse Jiles-Atherton model parameters identification, IEEE Trans. Magn. 39 (2003) 1397.
  • [114] Lewińska-Romicka A.: Badania nieniszczące. Podstawy defektoskopii, WNT Warszawa, 2001.
  • [115] Liorzou F., Phelps B., Atherton D.L.: Macroscopic models of magnetization, IEEE Trans. Magn. 36 (2000) 418.
  • [116] Lu H.Y., Zhu J.G., Hui R.: Measurement and modeling of thermal effects on magnetic hysteresis of soft ferrites, IEEE Trans. Magn. 43 (2007) 3952.
  • [117] Macintyre S.A.. Magnetic Field Measurement, CRC Press, 2000.
  • [118] Magnetic alloy 2705M (cobalt-based), Magnetic alloy 2826MB (iron nickel-based), technical bulletin, Metglas, 1993.
  • [119] Makaveev D., Dupre L., Wulf M., Melkebeek J.: Dynamie hysteresis modeling using feed-forward neural networks, J. Magn. Magn. Mater. 254-255 (2003) 256.
  • [120] Marshall S.V.: An analytic model of the fluxgate magnetometer, IEEE Trans. Magn. 3 (1967) 459.
  • [121] McHenry M.E., Willard M.A., Laughlin D.E.: Hitperm nanocrystalline soft magnets, Digest of Technical Papers INTERMAG. 4-8 April 2005.
  • [122] Meisel J.: Current instrument transformer error calculations, IEEE Transactions on Power Apparatus and Systems 82 (1963) 1082.
  • [123] Meydan T.: Application of amorphous materials to sensors, J. Magn. Magn. Mater. 133 (1994) 525.
  • [124] Meyergoyz I.D.: Mathematical models of hysteresis, IEEE Trans. Magn. 22 (1986) 603.
  • [125] Mino M., Tanaka T., Homma M.: Difference Between Temperature Dependences of Bothlnitial Permeability and Maximum Permeability of Sendust Alloys, IEEE Trans. Magn. 21 (1985) 1240.
  • [126] Mohri K., Sudoh E.: New extensometer using amorphous magnetostrictive ribbon wound cores, IEEE Trans. Magn. 17 (1981) 1317.
  • [127] Moore T.A., Gardiner S.M., Guertler C.M., Bland J.A.C.: Real time magnetisation reversal dynamics in epitaxial Fe/GaAs(001), Physica B 343 (2004) 337.
  • [128] Moses A.J., Williams P.I., Hoshtanar O.A.: Real time dynamic domain observation in bulk materials, J. Magn. Magn. Mater. 304 (2006) 150.
  • [129] Murthy S.R.: AE-effect in nickel-zinc ferrites, J. Phys. Colloques 49 (1988) C8-927.
  • [130] Nafalski A., Hoskins B., Kundu A., Doan T.: The use of neural networks in describing magnetisation phenomena, J. Magn. Magn. Mater. 160 (1996) 84.
  • [131] Nałęcz M., Jaworski J.: Miernictwo magnetyczne, WNT, Warszawa, 1968.
  • [132] Nien H.H., Liang T.I., Huang C.K., Changchien S.K., Shieh H.W.: Implementation of low loss Mn-Zn ferrite cores for power electronics applications, IEEE Power India Conference 2006, 10-12 April 2006, New Delhi, India.
  • [133] Nitzan D.: A square-loop magnetic core model for computer-aided circuit transient analysis, IEEE Transactions on Nuclear Science 15 (1968) 285.
  • [134] Nowacki P.J.: Obliczanie nieliniowych obwodów elektrycznych i magnetycznych, PWN, Warszawa, 1959.
  • [135] O'Handley R.: Modern magnetic materials — principles and applications, John Wiley & Sons, 2000.
  • [136] Obi Y.: The stress effect on magnetic domain structure of Fe-Co amorphous alloys, Applied Physics A: Materials Science & Processing 18 (1979) 119.
  • [137] Ong K.G., Grimes C.A.: Magnetically Soft Higher Order Harmonic Stress and Temperature Sensors, IEEE Trans. Magn. 39 (2003) 3414.
  • [138] Pang P., Huang S., Cai Q., Yao S., Zeng K., Grimes C.A.: Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device, Biosensors and Bioelectronics 23 (2007) 295.
  • [139] Patent P-345758, Bieńkowski A., Szewczyk R.: Urządzenie do obciążania rdzenia pierścieniowego przetwornika magnetosprężystego, 2001.
  • [140] Peloschek H., Perduijn D.: High-permeability MnZn ferrites with flat µ-T curves, IEEE Trans. Magn. 4 (1968) 453.
  • [141] Pfutzner H., Matsubara K.: Demagnetization effects in polycrystalline silicon iron with coating, IEEE Trans. Magn. 18 (1982) 1502.
  • [142] Płaska S.: Wprowadzenie do statystycznego sterowania procesami technologicznymi, Wydawnictwo Politechniki Lubelskiej, Lublin, 2000.
  • [143] Ponjavic M.M., Duric M.R.: Nonlinear modeling of the self-oscillating fluxgate current sensor, IEEE Sensors Journal 7 (2007) 1546.
  • [144] Postupolski T., Wiśniewska A.: The size dependence of the thermally and magnetically induced wall pinning in a Ni-Zn ferrite, J. Phys. Colloques 38 (1977) Cl-31.
  • [145] Press W., Teukolsky S., Vetterling W., Flannery B.: Numerical recipes in C, the art of ccientific computing, Cambridge University Press, 1992.
  • [146] Pressman A.: Switching mode power supply design, McGraw-Hill, New York 1998.
  • [147] Primdahl F.: The fluxgate mechanism, IEEE Trans. Magn. 6 (1970) 376.
  • [148] Qureshi A.H., Haudhary L.N.: Temperature dependence of coercive Field of Fe-Cu and Fe-3.25-percent Si alloys, IEEE Trans. Magn. 6 (1970) 705.
  • [149] Ramesh A., Jiles D.C., Bi Y.: Generalization of hysteresis modeling to anisotropic materials, J. Appl. Phys. 81 (1997) 5585.
  • [150] Ramesh A., Jiles D., Roderik J.: A model of anisotropic anhysteretic magnetization, IEEE Trans. Magn. 32 (1996) 4234-4236.
  • [151] Reddy B.P.N.: A note on the elastic moduli of ferrites at low temperatures, J. Phys. D: Appl. Phys. l (1968) 1213.
  • [152] Regulator Temperatury R-202, Czaki Thermo-product, 2007.
  • [153] Ribbenfjärd D., Engdahl G.: Hysteresis modeling including asymmetric domain rotation, IEEE Trans. Magn. 43 (2007) 1385.
  • [154] Ripka P.: Advances in fluxgate sensors, Sensors and Actuators A 106 (2003) 8.
  • [155] Ripka P.: Magnetic Sensors and Magnetometers, Artech, Boston, 2001.
  • [156] Ripka P.: Review of fluxgate sensors, Sensors and Actuators A33 (1992) 129
  • [157] Ripka P., Kubik J., Duffy M., Hurley W. G., O'Reilly S.: Current sensor in PCB technology, IEEE Sensors Journal 5 (2005) 433.
  • [158] Rivas J., Zamarro J.M., Martin E., Pereira C.: Simple approximation for magnetization curves and hysteresis loops, IEEE Trans. Magn. 17 (1981) 1498.
  • [159] Robertson P.A.: Microfabricated fluxgate sensors with low noise and wide bandwidth, Electronics Letters 36 (2000) 331.
  • [160] Rouabhi M., Guyot M., Cagan V., Krishnan R.: Domain wall pinning and hysteresis losses in amorphous CoNbZr films, IEEE Trans. Magn. 29 (1993) 3502.
  • [161] Sablik M.J., Augustyniak B., Chmielewski M.: Modeling biaxial stress effects on magnetic hysteresis in steel with the field and stress axes noncoaxial, J. Appl. Phys. 85 (1999) 4391.
  • [162] Sablik M.J., Burkhardt G.L., Kwun H. Jiles D.C.: A model for the effect of stress on the low-frequency harmonie content of the magnetic induction in ferromagnetic mate-rials, J. Appl. Phys. 63 (1988) 3930.
  • [163] Sablik M.J., Kwun H.: Hysteretic model for Barkhausen noise and the magnetically induced velocity change of ultrasonic waves in ferromagnets under stress, J. Appl. Phys. 69 (1991) 5791.
  • [164] Sablik M.J., Kwun H., Burkhardt G.L., Jiles D.C.: Model for the effect of tensile and compressive stress on ferromagnetic hysteresis, J. Appl. Phys. 61 (1987) 3799.
  • [165] Sablik M., Rubin S., Riley L., Jiles D., Kaminski D., Biner S.: A model for hysteretic magnetic properties under the application of noncoaxial stress and field, J. Appl. Phys. 74 (1993) 480.
  • [166] Salach J., Bieńkowski A., Szewczyk R.: The ring-shaped magnetoelastic torque sensors utilizing soft amorphous magnetic materials, J. Magn. Magn. Mater. 316 (2007) e607.
  • [167] Saliah H., Lowther D., Forghani B.: A neural network model of magnetic hysteresis for computational magnetics, IEEE Trans. Magn. 33 (1997) 4146.
  • [168] Scholz W., Forster H., Suess D., Schrefl T., Fidler J.: Micromagnetic simulation of domain wall pinning and domain wall motion, Computational Materials Science 25 (2002) 540.
  • [169] Schwefel H.P.: Numerical optimalization of numerical models, Wiley, 1981.
  • [170] Schwefel H.P.: Evolution and optimum seeking, Wiley 1995.
  • [171] Seekircher J., Hoffman B.: New magnetoelastic force sensor using amorphous alloys, Sensors and Actuators A21-A-23 (1990) 401.
  • [172] Serpico C., Yisone C.: Magnetic hysteresis modeling via feed-forward neural networks, IEEE Trans. Magn. 34 (1998) 623.
  • [173] Shishido H., KanT., It Y.: The magnetic domain and properties of amorphous ribbons, IEEE Trans. Magn. 21 (1985) 49.
  • [174] Sjostrom M.: Frequency analysis of Classical preisach model, IEEE Trans. Magn. 35 (1999) 2097.
  • [175] Soft ferrites data handbook, Philips, 1998.
  • [176] Soiński M.: Materiały magnetyczne w technice, Biblioteka Centralnego Ośrodka Szkolenia i Wydawnictw SEP 2001.
  • [177] Soohoo R.F.. Theory and Application of Ferrites, Prentice-Hall Inc., 1960.
  • [178] Spinu L., Borcia I.D., Stancu A., O'Connor C.J.: Time and temperature-dependent Preisach models, Physica B 306 (2001) 166.
  • [179] Stancu A., Piipusoi C.: Hysteresis modeling of recording media with an Interacting Stoner-Wohlfarth particles system, IEEE Trans. Magn. 30 (1994) 4308.
  • [180] Stoner E.C., Wohlfart E.P. A mechanism of magnetic hysteresis in heterogeneous alloy, Phil. Trans. Roy Soc. 240A (1948) 599.
  • [181] Su H., Zhang H., Tang X., Wei X. Effects of Calcining and Sintering Parameters on the Magnetic Properties of High-Permeability MnZn Ferrites, IEEE Trans. Magn. 41 (2005) 4225.
  • [182] Suh J.J., Song B.M., Han Y.H.: Temperature dependence of power loss of mn-zn ferrites at high frequency, IEEE Trans. Magn. 36 (2000) 3402.
  • [183] Szabo Z., Ivanyi A.: Computer-aided simulation of Stoner-Wohlfarth model, J. Magn. Magn. Mater. 215-216 (2000) 33.
  • [184] Szczygłowski J.: Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials, J. Magn. Magn. Mater. 223 (2001) 97.
  • [185] Szczygtowski J.: Modelowanie obwodu magnetycznego o jednorodnej i niejednorodnej strukturze materiałowej, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2001.
  • [186] Szewczyk R.: Extension for the model of the magnetic characteristics of anisotropic metallic glasses, J. Phys. D: Appl. Phys. 40 (2007) 4109.
  • [187] Szewczyk R.: Modeling the magnetic properties of amorphous soft magnetic materials for sensor applications, Journal of Optoelectronics and Advanced Materials 6 (2007) 1723.
  • [188] Szewczyk R.: Modelling the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites, Pramana — Journal of Physics 67 (2006) 1165.
  • [189] Szewczyk R.: Modelling the magnetic characteristics of isotropic and anisotropic materials for sensor applications, Acta Physica Polonica A 113 (2008) 67.
  • [190] Szewczyk R.: Modelling the influence of temperature on the magnetic characteristics of Fe40Ni38Mo4B18 amorphous alloy for magnetoelastic sensors, w Recent Advances in Mechatronics, Ed. R. Jabłoński, M. Turkowski, R. Szewczyk, Springer, 2007.
  • [191] Szewczyk R.: Modelling the frequency dependence of magnetic characteristics of amorphous alloys, Proc. Int. Conf. SMM'18, 2nd-5th September 2007, Cardiff University, U.K.
  • [192] Szewczyk R., Bieńkowski A.: Nowa metodyka badania magnetosprężystych właściwości materiałów magnetycznie miękkich jako sensorów naprężeń i sił, Przegląd Elektrotechniczny 2 (2004) 169-172.
  • [193] Szewczyk R., Bieńkowski A., Salach J.: Extended Jiles-Atherton model for modelling the magnetic characteristics of isotropic materials, Journal of Magnetism and Magnetic Materials 320 (2008) e!049.
  • [194] Szewczyk R., Salach J., Bieńkowski A.: Modeling of the influence of the torque on the magnetic properties of amorphous alloys, J. Magn. Magn. Mater. 310 (2007) e907-e909.
  • [195] Szewczyk R., Salach J., Bieńkowski A.: Modelling the magnetoelastic materials for force and torque sensors, Solid State Phenomena 144 (2009) 124 (w druku).
  • [196] Szewczyk R., Salach J., Safinowski M.: Nowe przetworniki transduktorowe w konfiguracji Vaquiera z rdzeniami z taśmy amorficznej, Proc. Int. Conf. AUTOMATION 2006, 22-24 marca 2006, Warszawa.
  • [197] Taylor J.: Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1999.
  • [198] Tipek A., O'Donnell T., Ripka P., Kubik J.: Excitation and temperature stability of PCB fluxgate sensor, IEEE Sensors Journal 5 (2005) 1264.
  • [199] Tremolet E.: Magnetostriction, CRC Press, London, 1992.
  • [200] Tumański S.: Cienkowarstwowe czujniki magnetorezystancyjne, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1997.
  • [201] Umbach F., Acker H., Kluge J., Langheinrich W.: Contactless measurement of torque, Mechatronics 12 (2002) 1023.
  • [202] Vadja F., Delia Torre E.: Measurement of output dependent Preisach functions, IEEE Trans. Magn. 27 (1991) 4757.
  • [203] Vajda F., Delia Torre E.: Hierarchy of scalar hysteresis models for magnetic recording, IEEE Trans. Magn. 32 (1996) 1112.
  • [204] Valenzuela R.: Magnetic Ceramics, Cambridge University Press, Cambridge, 1994.
  • [205] Venkataraman R.: Modelling and adaptive control of magnetostrictive actuators, Ph.D. Thesis, University of Maryland, 1999.
  • [206] Vertesy G., Tomas I., Yertesy Z.: On the temperature dependence of domain wall pinning field in soft uniaxial magnetic materials, J. Phys. D: Appl. Phys. 35 (2002) 625.
  • [207] Vojtanik P., Andrejco R., Varga R., Kovac J., Csach K., Lovas A.: Magnetic and structural properties of amorphous Co-Cr-Si-B alloys, Czechoslovak Journal of Physics 54 (2004) Dl 13.
  • [208] Wadas R.: Ferrimagnetyzm, PWN, Warszawa, 1968.
  • [209] Wilson P.R., Ross J.N., Brown A.D.: Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm, IEEE Trans. Magn. 37 (2001) 989.
  • [210] Won-Youl C., Jun-Sik H., Sang-On C.: The microfluxgate magnetic sensor having closed magnetic path, IEEE Sensors Journal 4 (2004) 768.
  • [211] Wulf M., Vandevelde L., Maes J., Dupre L., Melkebeek J.: Computation of the Preisach distribution function based on the measured Everett map, IEEE Trans. Magn. 36 (2000) 3141.
  • [212] Wyrażanie niepewności pomiaru. Przewodnik, Główny Urząd Miar, Warszawa, 1999.
  • [213] Yapp R., Watts B.E., Leccabue F.: Characterisation of amorphous Fe-Cr-Si-B alloys, J. Magn. Magn. Mater. 215-216 (2000) 300.
  • [214] Yi J., Lee S.: Theoretical study on eddy current tests for ferromagnetic materials, J. Appl. Phys. 60 (1986) 732.
  • [215] Zegadi L., Rousseau J.J.: Phenomenological model for soft ferrites MnZn including the temperature, Proc. 28th Annual Power Electronics Specialists Conference PESC'97, 22-27 Jun 1997.
  • [216] Zeng K., Grimes C.A.: Wireless magnetoelastic physical, chemical, and biological sensors, IEEE Trans. Magn. 43 (2007) 2358.
  • [217] Zhou J., Skomski R., Kashyapl A., Sorge K.D., Sui Y., Daniil M., Gao L., Yan M.L., Liou S.H., Kirby R.D., Sellmyer D.J.: Highly coercive thin-film nanostructures, J. Magn. Magn. Mater. 290-291 (2005) 227.
  • [218] Zieliński R.: Metody Monte Carlo, WNT, Warszawa, 1970.
  • [219] Zorlu O., Kejik P., Popovic R.S.: Fluxgate-type magnetic Microsensors for wide linear measuring range, Sensors Applications Symposium SAS'07, 6-8 Feb. 2007.
  • [220] Zorlu O., Kejik P., Yincent F., Popovic R.S.: An orthogonal fluxgate-type magnetic microsensor, 19th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2006, Istanbul.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0004-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.