PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling learning on dynamic behaviour of synapses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Learning is a process involved in multiple timescales. As per biology, changes which last from milliseconds to seconds and hours to days are the main mediators for the formation of short-term and long-term memory. It is obvious that, memory formation is neither static nor it is restricted into a one phase of life. Every step we keep in our life, even it succeed or fail or no matter what happen, we learn from them and acquire invaluable knowledge on that, which makes us easy manipulation on similar events in future. Thus continuous learning in a dynamic environment is a necessary qualification for the researches which are interested in studying phenomena, such as addiction, stress, noise, etc on such a dynamic learning environments. This research proposes a new approach of modelling our nervous system with the intention of implementing learning on dynamic environment.
Rocznik
Tom
Strony
175--180
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
  • Department of Management and Information Systems Engineering, Nagaoka University of Technology, Japan
autor
autor
autor
Bibliografia
  • [1] ABBOTT L.F., NELSON S.B., Synaptic plasticity: taming the beast, Neuroscience, Nature,Vol.3. pp-1178-1183, 2000.
  • [2] ABBOTT L.F., REGEHR W.G., Synaptic computation, Nature, Vol.431, pp. 796-803, 2004.
  • [3] BURRONE J., MURTHY V.N., Synaptic gain control and homeostasis, Current Opinion in Neurobiology, Vol.13. pp. 560-567, 2003.
  • [4] DAVIS G.W., Homeostatic control of neural activity: from phenomenology to molecular design, Annual Review of Neuroscience, Vol. 29. pp. 307-323, 2006.
  • [5] DESTEXHE A., MARDER E., Plasticity in single neuron circuit computations, Nature, Vol. 431, pp. 789-795, 2004.
  • [6] HYMAN S.E., MALENKA R.C., Addiction and the brain: the neurobiology of compulsion and its persistence, Neuroscience, Nature, Vol.2. pp. 695-703, 2001.
  • [7] MAASS W., ZADOR M., Dynamic stochastic synapses as computational units, MIT Press, 1998.
  • [8] TURRIGIANO G., Homeostatic plasticity in neural networks: the more things change, the more they stay the same, Trends in Neuroscience, Elsevier Science, Vol.22.No.5, pp. 221-227. 1999.
  • [9] TURRIGIANO G., NELSON S., Homeostatic plasticity in the developing nervous system, Neuroscience, Nature, Vol.5. pp. 97-107, 2004.
  • [10] ZUCKER R., Short-term synaptic plasticity, Annual Review of Neuroscience, Vol.12, pp. 13-31, 1989.
  • [11] Genetic Science Learning Center, Drugs Alter the Brain's Reward Pathway, Learn. Genetics 11 August 2009 http://learn.genetics.utah.edu/content/addiction/drugs/
  • [12] American Council of Drug Education, basic facts about drugs: Marijuana, 11 August 2009, http://www.acde.org/common/Marijana.htm
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0002-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.