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MODELING LEARNING ON DYNAMIC BEHAVIOUR OF SYNAPSES

Learning is a process involved in multiple timessalAs per biology, changes which last from miti@eds to seconds and
hours to days are the main mediators for the fdomaif short-term and long-term memory. It is omdahat, memory formation is
neither static nor it is restricted into a one ghatlife. Every step we keep in our life, eversitcceed or fail or no matter what
happen, we learn from them and acquire invaluablesedge on that, which makes us easy manipulatiorsimilar events
in future. Thus continuous learning in a dynamigiemment is a necessary qualification for the agslees which are interested in
studying phenomena, such as addiction, stresse,neis on such a dynamic learning environmentss Tégearch proposes a new
approach of modelling our nervous system with therition of implementing learning on dynamic enmir@nt.

1. INTRODUCTION

Artificial neural network, the present day exampfdearning and memory formation has demonstratedpplicability
in many fields including medicine, engineering.esce, management, etc. However, it is still unadldemonstrate learning
on dynamic environment which is rich with tempdrdbrmation [1]. The static representation of leagneffect has weakened
neural network being evolved and worked in a dymaemvironment. This has being a greater barrietiferresearches which
are interested in studying or simulating phenomemodynamic learning environment.

For example, medical phenomenon like addiction twh& supposed to be aroused as a result of pleaswsng
activities such as eating, drinking, sex, etc ffialilt to simulate with the present neural netwarichitecture. As a result of
engaging in pleasure causing activities, also knas/beneficial behaviour, dopamine is releasedobygial neurons in reward
pathway. In addition to making us feeling betterewhengaging in beneficial behaviour, rewarding patfs are also
responsible for, encouraging us to repeat the iactagain and again, rewarding pathways strengéhcinnection of that
behaviour [6]. Normally in our active brain, inHifniy neurotransmitters are active in synapses. & hearotransmitters inhibit
dopamine being released. When we engage in bealefiehaviours, anadamide is released, which stbpsrdlease of
neurotransmitters and lets the dopamine to be getkaAnadamide is known to be involved in remouimgecessary short-
term memory. However, anadamide breaks down veigkiyuin the body. If you take drug, like marijuarithas THC (delta-
9-tetrahydrocannabinol) chemical substance thatiecsirhe role of anadamide and stops the releasehdfitory neurons.
Thus, THC allows the dopamine to be released. THEsdhot break down very quickly like anadamide, imday effect to
the loosing of short-term and long-term memory [12].

Thus, it is interested to know, the role of dynasyoapses in an addiction environment and how &ddidamages to
the short- and long-term memory formation. Furthiee, researches into similar areas may willingiid the answers for the
research questions, such as, what are the maiaathastics of the particular behaviour, which mewsr participating in the
circuit produce that behaviour, what is the conindggtamong those neurons, and how those neurodstlzir connections
give rise to those behaviour. To answer these mumssaccurately, it is necessary to simulate sucim@resting phenomenon
in a similar environment where it is exist in tl&lrworld. Thus, in this particular case, it ise&sary to simulate addiction on
a dynamic learning environment to find the accusaastgwers for those questions.

Therefore, in our research we propose a new apprma@nplement a neural network, which enablesshert- and
long-term memory formation on dynamic environmémiour research, we define nervous system as antignaetwork where
each neuron is model as an agent with large nuofbeonstituent elements, known as constituent agevttich play the role
of synapses. These synapses can either be tragrsngttreceptors, and also they can either betimeaor inactive statuses.
These two dynamic statuses are controlled throhght-sand long-term plasticity mechanisms. Thevactiumber of receptors
in a given connection defines the strength of thenection at a given time, thus making the stremiythamic rather than
static.

2. SYNAPTIC PLASTICITY

Our human brain is a network of millions of neuroBsich neuron consists of millions of synapses Wwiticnvey
information whilst contributing the memory formatiand learning. A typical structure of a neuronsiown in fig. 1.
As shown in the figure, at the end of axon ternsrthlere are special cleft called synapses, locatidmere information is
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really exchanged from one neuron to another. lragges, information is exchanged as a means of inensmitter release.
The amount of neurotransmitter released dependseosynapses type, location and its status, se@.fig

Basically neuron which transmits the signal is knoas pre-synaptic neuron, and neuron which recehesignal is
known as post-synaptic neuron. Thus, synapsesedrsymaptic neuron play the role of transmitters aypdapses in post-
synaptic neurons play the role of receptors. Theparse to the pre-synaptic action potentials ot-ppsaptic receptors
depends on their statuses and locations. Thersfprapses in the same neuron exhibits differentipigsbased on their
statuses, location and density; plasticity of aapge is the adaption of the synapse accordingetexternal or internal stimuli.
This variation is considered to be aroused becafiggge number of underlying mechanisms, collegjisknown as synaptic
plasticity. Synaptic plasticity is mainly classiieunder three plasticity processes, namely sham-tglasticity, long-term
plasticity and homeostatic plasticity.

Fluctuations in synapses, which release neurotrigtess) are highly dynamic and show the plastiaityvide range of
time scales. This plasticity can vary from milliseds to seconds and hours to days. The plasticitichwlast from
milliseconds to seconds are known as short-termstipity whilst plasticity that lasts from hours days are known as long-
term plasticity. Short-term plasticity is consider@s the main correspondent for short-term memamydtion, and long-term
plasticity is for long-term memory formation an@idging.

Very large external stimuli may take the neurowo inigh firing frequency, On the other hand very lioeguency take it
to very low firing rate. However, neurons are alsquired to maintain its firing rate within a sdesi operational range to
avoid any physical damage. Therefore, neurons wpest to two opposition requirements, i.e. needhange, and need for
stability. The process, which brings a neuron $ooperational range when the firing rate of theroaeus very high or low,
is known as homeostatic plasticity [3, 4, 8, 9].dar paper, we mainly focus on the processes oftshod long-term
plasticity, and memory formation.
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Fig. 1.A structure of atypical neuron consists of dendrites, Fig. 2.Release of neurotransmitters.
cell body and axon. Dendrites take signals froneotteurons, At the end of axon terminals, there are speciaitioa
process them in cell body and finally signals amppgated trough called synapse, the location where the information
the axon to axon terminals. exchange takes place. At the synapse, signals are

transmitted as a release of neurotransmitters. The

amount of neurotransmitter release depends on the

signal strength, pre-synaptic neuron status and its
location. Furthermore, the response of the postsyt
neuron also depends on its status, location, ansitge

2.1. SHORT-TERM PLASTICITY

As per biology, short-term plasticity can alterpesse of receptors in post-synaptic neuron theoblaypge the overall
activities of the neural circuit. The responsesezeptors mainly depend on their size, locatiorts satuses. However, in our
research, we are interest on studying how the 4bort plasticity changes the synapse status one. tSynapses with low-
initial-probability-release can later (after couml® milliseconds) exhibit as high-pass-filters; sarly synapses with high-
initial-probability-release can later exhibit aswhpass-filters. Moreover, synapses with intermedigirobability of
neurotransmitter release, also known as banddjltan later change either to high-pass-filted®wrpass-filters, based on the
pre-synaptic neuron inhibition. As such we can arthat, the status of synapse depends on the pegisy neuron activity,
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which in turn depends on the post-synaptic respofisgs we argue that, pre-synaptic neuron actsvaied the previous status
of the synapse determine the current status ofyhapse [2, 5]. Therefore, dynamic status of symaas be explained as
a stochastic process as described in the nexbgeecti

2.2. MODELING SHORT-TERM PLASTICITY AS STOCHASTIC PROCES

When a brief train of stimuli is applied to a psgaptic neuron, during the train the amplitude lné resulting
pre-synaptic potential may either increase (cadigdaptic facilitation) or decease (called synapgpression). A relatively
long, high-frequency train of stimuli, known asatetis, usually results in synaptic-depression, fet a few seconds, it is
followed by an increase in synaptic potential atoplé that can last for tens of minutes. This isedapost-tetanic-potentiation
of transmitter release. Meanwhile facilitation aggseinstantly and lasts for milliseconds to secataiéng the tetanic build-
up. Fig.3 shows the normalized form of amount ofiro&ansmitter release corresponding to the simatias effect of
facilitation, depression and potentiation.
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Fig. 3.Frequency dependent changesin Synaptic status,
the effect of simultaneous facilitation, depressaon potentiation on transmitter release [10].

To model the short-term plasticity, we use the m@deposed by Mass and Zador which improves thepudational
power of synapses with two statuses, i.e. Rele@}ei Failure of release (F) whilst describing thédynamic status under
stochastic process [7]. Synapses change theirss&tiltom R to F or F to R based on the stochastibgbility, which is
defined in eq.1. For each spike in spike traimé, dutput of the synapse consists of the sequeftcefShose ite t on which
neurotransmitters are released by S. Tha$§(t) becomes a stochastic process, computed bysgri with output sequence
0= Qi &, G, -..., G € {R,F}. P(t) defines the probability thal ispike in the pre-synaptic spike train t 5 ... t) triggers the
release of a signal at time t of the synapse S.

If Pg(t) >0 then spike excites synapse and releases thetrensmitters, so the output is R, otherwisedihigut is F.
Non-negative functions C(t) and V(t), defined inZ2@nd eq.4., model facilitation and depressiomckan C(s) in eq.3,
models the response of C(t) to a pre-synaptic siiiae had reached to the synapse S at t-s. Mordametion V(s) in eq.5,
models the response of V(t) to a proceeding relehtge synapse S at time t&. Whilst non-negative parametersrt, andr,
model the magnitude of the signal and the decagtaon of facilitation and depression respectiv€ly.and \5 model the
parameters for equilibrium statuses. Summary ofaimput of the synapse S on a given time spikertimishown in fig.4.
It is interesting to note that all spike do not smdhe release of neurotransmitters. And arisedfitation may lead to the
depression and may stop the neurotransmitters Ioelegsed.

ps (ti ) =1- e—c(t‘ v (t) (1)
Ct)=Co+Y.C(t-t,) 2

C(s) = giém’ ©)

V() = mao{ oVo- > VIt —ti)) 4
V(s) :::jt - (5)
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Fig. 4.Dynamic status of synapse on a spiketraint,
synapse S releases the neurotransmitter only dakgut is R, otherwise it does not release theatmmsmitters [7].

Thus, neurotransmission can be excitatory, i.ere@me in post-synaptic neuron firing on an actiarteptial,
or inhibitory, the decrease in post-synaptic neufioing. Excitation can be considered as the radleas R for further
propagation of a signal. Furthermore when F isatl@ut the signal propagation is stopped anddaliked inhibition. Another
important aspect of this modelling is the two tideray constants for facilitation and depressionti.andt,. For the short-
term plasticity these two constants vary from sétonds to seconds.

2.3. LONG-TERM PLASTICITY

In our nervous system, repetitive activities caadpice changes in synaptic efficacy which lasts flauars to days.
The long duration of these changes suggests thgtritay be associated with long-term memory fornmatichese repetitive
activities can induce two types of changes, namelyg-term potentiation and long-term depressios.p&r biology, long-
term potentiation can be induced by applying higtgfiency stimulation of inputs which ultimately guzes a subsequent
increase in the amplitude of excitatory synaptiteptal that lasts for hours to days. Long-termeptiaition appears to involve
in both the insertion of new receptors and incréaseceptor sensitivity in post-synaptic neurom. e other hand, long-term
depression is a prolonged depression produceddwaqus repetitive activities in the same pathwagifferent pathway to the
same cell. This long-term depression can be indunegrolonged low-frequency stimulation and it agg@eto mediate
a decrease in receptor numbers and sensitivity.

2.4. MODELING LONG-TERM PLASTICITY WITH SHORT-TERM PLASTCITY

Synaptic facilitation and depression occur on rpléttimescales, including short-term or long-tefitherefore we are
interested in integrating short-term plasticity lwthe long-term plasticity, which provide an unde¥lframework for short-
and long-term memory formation. Activities thattlésr milliseconds to seconds involve in short-tenmemory formation
whilst repetitive calling of these activities ogsals with high frequencies may mediate the fatibh and depression which
could last for hours to days.

Thus, we can extend the modal proposed by MassZaddr to incorporate the long-term plasticity. Thigension
must attribute the factors which induce the longrt@otentiation and -depression, namely high-fregyestimulation of
inputs, repetitive calling of activities and loweffuency stimulation of inputs which could last faurs to days. Once we
assign larger values like hours to daysstandrt,, we can modal the long-term -potentiation and redegon. The repetitive
calling of short-term activities can mediate thenfation of long-term memory as well. An update lo¢ above theory is
shown in eq.6 to eq.12. Modifications to eq.7 isriegrate both short- and long-term facilitatisimilarly, modification to
eq.10 is to accommodate both short- and long-tezpratsionz,, 1. 1 andrt, are the time decay constants for short- and
long-term facilitation and depression respectiv@llye parametergs ando; model the magnitude of the signal for short- and
long-term facilitation.

P(t)=1-e 0 (6)

C(t)=Co + 2 Cit-t)+2 C(t-t)) )

C.(s)=a, 0O ®

C(s)=a @™ ©

V(t)=max{0,\/o— >oov(t-t)- > V,(t—tj)J (10)
1t <tand t;0S(t) tjitj<tand t;0S(t)

V,(s)=e¥"™ (11)

Vi(s) =e ™ 12)
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3. AGENT MODELLING ON DYNAMIC SYNAPSES

In our research, nervous system is modelled asnardiz neural network, where each neuron, an agensists of
large number of constituent elements, known astitaaat agents playing the role of synapses. A ggaacan either be
a transmitter or a receptor. Therefore, typicalctire of a neuron agent, in our approach can berslas in fig. 5.
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receptors

transmitters

nactive

Fig. 5.A typical structure of a model neuron. A neuron consists large number constituent elésneither play the role of transmitters or
receptors. The statuses of these synapses canechergyding to the input stimulus. When the ougdthe synapse is R, it is considered as
an active synapse and when output is F, it is demed as inactive.

The propose agent structure enables the synapdes/éotwo dynamic statuses, either active or imacOnly active
receptors can receive signals from other neurams paopagate the signal to transmitters in the sagoeon. Similarly, active
transmitters can only transmit signals to the rearspn other neurons. If the selected receptdrarsmitter is in the inactive
status subsequently the signal is dropped. In iadditeceptors in a neuron are grouped and numfceptor groups within
the neuron is equal to the number of neurons iméteork -1. Also the number of receptors in eaglug may change based
on the connection strength. Therefore, number oéptors, and active number of receptors of a go@mection are the
critical factors which determine the strength @& tonnection between two neurons. Thus, the propa$étecture enables to
model the synapses with two dynamic statuses whieh manipulated by short- and long-term plasticitgchanisms.
For example, if we consider a network with four rees, the typical structure of the network can @ as in fig.6.

o
=

transmitters

Fig. 6.Structure of the network with four model neurons. Each neuron has three receptor groups correspptalithe other three
neurons. Transmitters are not grouped, but fordhdomly selected neuron, a transmitter can trartbmisignal to a randomly selected
receptor in the corresponding receptor group ostected neuron. Within the network, signal isppigated in terms of messages.
A, B, C and D are neurons in the network. Receptoeaah neuron are grouped to communicate with threggonding neuron.

For example, receptor group C in neuron A can conicatie with only the transmitters in C neuron

Receptors are grouped into three groups to edtatilis connection with the other three neurons. Qheeexternal
stimulus is given to the input layer neurons, aptor in each receptor group may receive the sigitadn the signals are
propagated to the transmitters in the same neudr@msmitters those are in active statuses randaeelgct a neuron, and
transmit the signal to a receptor in the correspandeceptor group of the selected neuron. Foairs, if active transmitter
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in neuron A wants to transmit the signal to a rémejn neuron B, then it selects the receptor frémeceptor group
in neuron B.

4. DISCUSSION

Memory continuously improves while adapting to em&é¢ and internal stimuli. Changes that occur daehese
adoptions could last for milliseconds to seconds, ours to days. Thus based on their duratiomggsare classified into
two main phenomena, i.e. short-term plasticity dmog-term plasticity. According to biology, thesecot processes are
correlated so that short-term manipulations affe¢he long-term behaviours. However, behaviourthe$e two processes can
be explained by dynamic behaviour of synapses &l wersa. The location of synapses, statusestwiddize define the
response to the external or internal stimuli whitthmately define the overall activity of the nenssystem.

In this paper, we proposed a new approach to migelearning process by mainly concentrating ondiueamic
behaviour of synapses. The approach identifienémeous system as a dynamic network where conmsciomong neurons
are subjective to the behaviours of synapses. e gnodel defines the neuron as an agent wittelatgnber of constituent
agents playing the role of synapses either as ristess or receptors. Receptors within the neurmn grouped therefore
number of receptors in a group, and the numbectdfeareceptors within the group determine thergjtie of the connection at
a given moment.
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