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VISUALIZATION OF STAGES OF DETERMINING CEPSTRAL FACTORSIN SPEECH
RECOGNITION SYSTEMS

The article presents two methods of determinatibeepstral parameters commonly applied in digiighal processing,
in particular in speech recognition systems. THetgms presented are part of a project aimed @tldping applications allowing to
control the Windows operating system with voice #meluse of MSAA (Microsoft Active AccessibilityJhe analysed voice signal
has been visually presented at each of the crsi@gks of developing cepstral coefficients.

1. INTRODUCTION

Operating system manual control with the use oifgberals such as the keyboard or the mouse is ancmty applied
solution. There are more and more frequent attemngsoving control over the computer, in particularcases in which
physically handicapped or blind persons wish to tleecomputer. One of the solutions to the probigrthe use of voice
commands. Systems enabling voice recognition coatto meet with such problems as adverse impasadfground noises
during voice acquisition, utterance speed changegevintensity change depending on the mood, psgtkibndition or plain
cold. The implemented isolated words recognitiostey ought to compensate for the impact of theserad factors on its
performance.

1.1. DESIGN OF THE SPEECH RECOGNITION SYSTEM

Isolated words recognition systems comprise thessctblocks (Fig. 1). The first block is responsibibr voice signal
acquisition and conversion to a form enabling femxtraction [6, 7, 8]. Within block two, the sajris converted to a form
enabling quick and easy storage and classificatifothe voice word patterns obtained. Block threeeisponsible for the
decision on the signal classification in a corgraiup or specific pattern from the pattern base [3]

Speech signal acquisition Feature extraction Classification
and initial processing (signal parametrisation)

Fig. 1. Speech recognition system design geneagkaim

2. SPEECH SIGNAL PARAMETRISATION STAGES

Speech signal conversion into a parametric formeisessary due to a great complexity of the speigrtalsdigital
form. Parameters obtained based on a full signedl ne accurately reflect the speech signal physestures which we are
interested in and to allow for the possibly mostusate classification, which in turn affect recdgmi of the words uttered.
For this purpose, a number of parameters obtaiasddon time course, signal spectre or linear giiedicoding [3].

At present, parameters most frequently used insgie=ch recognition process are the so-called e¢pstefficients
which may be determined in two ways. The firstheh involves the application of linear predictivwding (Fig. 2) (LPCCs,
Linear Prediction Cepstral Coefficients). The otirolves the application of Fourier transform (FR) (MFCCs - Mel-
Frequency Cepstral Coefficients) [10, 11].
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Fig. 2. Block diagram of the LPCC evaluation algaritthumbers among arrows mean vector lengths)
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Fig. 3. Block diagram of the MFCC evaluation algaritthumbers among arrows mean vector lengths)

In both cases, the analysed speech signal ougltietaconverted into a correct form by means of usn§IR
pre-emphasis filter and free from unnecessary lofataeans of determining word boundaries [6]. Fighdws the word signal
of 'Property’ following detection of its boundari@shis is the output signal by means of which fartetages of determining
cepstral coefficients will be presented.
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Fig. 4. 'Property' word signal

The next step is the division of the signal intanfies and the application of the windowing functigig. 5).
This is performed in order to protect the instaatars spectre against the occurrence of interferelcing Fournier
transform. In order to get rid of additional harrmsnin the instantaneous spectre, time course feaggrare smoothed over at
frame ends. The windowing operation may be recovdédthe following formulas [9, 12]:

Y. = % (N 0N @)
w(n) =0,54- O,46coE 27m j 8 n< N- (2)
where:
w(n) - Hamming window,
A - signal after windowing
y,(n) - (n)the signal sample value for the frame,
N - frame length,
n - sample number in the signal frame.
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Fig. 5. 'Property’ word signal after applicationH&#mming window (dotted line indicates window shape
Horizontal lines separate individual signal frar@é§-sample-long).
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3. LPCCS

Determination of cepstral coefficients with thesfimethod requires LPCCs (Fig. 2). During theired®ination,
we additionally obtain autocorrelation coefficien&C) and reflection coefficients (REF). The optimmethod of
determination of the foregoing coefficients is tts® of the two-stage Levinson-Durbin algorithm.

The linear predictive coding technique is basedhenassumption that a signal sample may be prebasta linear
combination ofp previous samples meaning that its value may beligiesl' based op preceding speech signal values.
Assuming that we know the origin of tlyesignal, i.e {y(n-p), ..., y(n-1)} we may develop a predicate described with the
following formula:

Y =3 a () @

where:
y,(n) - (n) th signal sample value for the frame,

a; - prediction coefficients.
The algorithm used to determine the LPCCs whiclameinterested in is as follows [5]:

1) Determination of autocorrelation coefficientgiwthe following formula:

r(k):N_leky(n)y(m K, wherek=0,1,2,3,.. p (4)

n=0

2) Determination of predictive coefficients of theh power:
a) Setting initial values:

E=r0) ; a,=k=rQ)/E, : E=E(1-K) (5.6.,7)

b) Iterative execution of the following 6 steps1 until m=p-1:

m-1
Q=1 M =Y 8y fm=) i k== 5 a3, =k, (8,9, 10)
i=1 E(m—l)
Ay = Ama) ~ KnBmymy Ori=L..m-1 ; E =E_[1-K] ; m=m+l (11, 12)
where:
r(k) - autocorrelation coefficient® € k < p),
a = ap - predictive coefficients (¥i <p),
K - reflection coefficients (¥m < p),

p - number of predictive coefficients,
E, m - auxiliary parameters.

Using the formula (3) and having appropriate LP@ ariginal signal values, one may reproduce thaaigeen in the
following figure (Fig. 6). The signal was generateased on prediction regarding every fourth sigraahple, with the use of
the three preceding samplgs=8) of the original signal.
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Fig. 6. 'Property’ word signal generated with tBe af linear predictive coding fp=3. Bright colour indicates the original signal
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In order to obtain LPCCs one needs to use recudepeéndency allowing to determine cepstral coeffits directly
from predictive coefficients, [5]:

c)=4a (13)
c(n):an+nz:1:%q(k)aFk forl<n<p (14)
o= 3 dRg.forn>p (15)

where:
c(n) - n-th LPCC.

Cepstrumc(n) has infinite length; thus, system recognition egst use from 8 to 12 coefficients. So generatig@tei
LPCCs for each frame of the 'Property’ word exanchinmge obtain the signal shown below. (Fig 7).
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Fig. 7. Graph showing LPPC values for individuahifies of the signal examined

4. MFCCS

The other method of determining cepstral coeffitsen based on the discreet Fourier transform (D&l Mel-scale
filtration. MFCC determination stages have beerwshim Fig. 3.

The first step is to covert the signal from timenfioto frequency for in order to determine instaetaus spectres of the
signal. This is carried out with the discreet Feutransform [1, 2]:

=2 jrkn

y'(k):fy(rpeN k=0,1,..,N-1 (16)

where:

y (k) - k-th signal value after DFT,
y(n) - n-th signal sample value after windowing,

or the fast Fourier transform algorithm (FFT) inviag recurrent DFT division into smaller (N/2) tagd]:

Efl —-2mjkn Lﬂjkﬂ{l —2mrjkn

) 2. . N N2 N

Y=y (ne? +e? Y Y pe? (17)
n=0 n=0

where:

y (n) - values of even signal samples after windowing,
y (n) - value of uneven signal samples after windowing.

As a result of calculations involving complex numhe receive the actual pake(y(k)) and the imaginarim(y (k)) of
the transform which are used to determine the smmplitude spectre (Fig. 8) based on the followdlegpendency [5]:
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|y'(k)|:\/Re2(y'(k))+Imz(y(k)) k= 0,1,2.. N/ 18
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Fig. 8. Spectre of the signal examined

The signal spectre is multiplied by the trianguldel filters bank the frequency response of whictsigpposed to
simulate the behaviour of the human ear. The matetween the Mel scale and the Hertz scale iseegpd with
the following dependency (Fig. 9) [11]:

Fro = 2595Iog_0( jES ;:(”)Bj (19)

The filters are distributed in a way ensuring arhBDdistance between filter central frequencies 3®@mel width of
them. The number of the filters is usually 16 or(B#y. 10). In order to obtain information on thexdtion of a frequency
expressed in Hertz for a given signal sample &iteF, the following formula is used:

F
Fszﬁpuk k=0,1,.. N— 1 (20)

where:
Fo - signal sampling frequency during acquisition.
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Fig. 9. Graph showing dependencies between Meésedles and Hertz-scale values
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Fig. 10. Distribution of 16 Mel-scale filters [4, 91]
The filtration operation may be presented withfiillowing formula [10] (Fig. 11):
b+ o2
y(m= Y |y(ROF (B 1< me M (21)
k=h, ~2m
2
1+ 2K78) oy
Fa, (K) = A, (22)
0 k>N,
where:
y (m) - frame signal after filtration,
bm - location of them filter central frequency in the DFT field,
Am - width of them, filter band whereA , =b,,—Db..,,

M - humber of filters (16),
FAm(k) - k- mfilter value where is the DFT index.
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Fig. 11. Signal examined after Mel-scale filtration

The last step of determining MFCCs is finding thgoethm (Fig. 12) and reverse conversion of tlgmal into the time
form with the reverse Fourier transform. These apiens may be replaced with one dependency usiagli$creet cosine
transform reducing the algorithm calculation comfie[4]:

M . n-0,5)k
() =3 log(y (1) Eto{”(M—)j (23)
n=1
where:
c(k) - k- th Mel-cepstrum coefficient for a specific frame.
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In this way, we obtain the MFCCs shown in the faflog diagram (Fig. 13) in which 8 coefficients peach signal

frame were determined.
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Fig. 12. Signal after finding the algorithm

MFCC value
3,5
3
2,5
2
1,56
1
0,5
0
-0,5
-1
1,5
-2
-2,5
-3
-3,5

Frame 1
Frame 14

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
Number of MFCC coefficient

Fig. 13. Graph showing MFCC values for individuahfies of the signal examined.

5. CONCLUSIONS

Cepstral coefficients are now the primary elemensmgeech systems operation. As the research catlsttows,

the application of MFCCs provides better classtfararesults as compared to LPCCs. Still, from algorithmical point of
view, determination of MFCCs is far more difficalhd complex with respect to calculations. Applicatdf the FFT algorithm
reduces the calculation complexity yet entails rted to divide the signal into frames of dimensibaisg a power of two
(256-sample-long most frequently) and the need @mowve incomplete frames. With current computati@pacities,
determination of MFCCs in real time does not cauntia significant problem, however.
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