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VISUALIZATION OF STAGES OF DETERMINING CEPSTRAL FACTORS IN SPEECH 
RECOGNITION SYSTEMS 

The article presents two methods of determination of cepstral parameters commonly applied in digital signal processing,  
in particular in speech recognition systems. The solutions presented are part of a project aimed at developing applications allowing to 
control the Windows operating system with voice and the use of MSAA (Microsoft Active Accessibility). The analysed voice signal 
has been visually presented at each of the crucial stages of developing cepstral coefficients. 

1. INTRODUCTION 

Operating system manual control with the use of peripherals such as the keyboard or the mouse is a commonly applied 
solution. There are more and more frequent attempts improving control over the computer, in particular in cases in which 
physically handicapped or blind persons wish to use the computer. One of the solutions to the problem is the use of voice 
commands. Systems enabling voice recognition continue to meet with such problems as adverse impact of background noises 
during voice acquisition, utterance speed change, voice intensity change depending on the mood, psychical condition or plain 
cold. The implemented isolated words recognition system ought to compensate for the impact of these adverse factors on its 
performance. 

1.1. DESIGN OF THE SPEECH RECOGNITION SYSTEM 

Isolated words recognition systems comprise three basic blocks (Fig. 1). The first block is responsible for voice signal 
acquisition and conversion to a form enabling feature extraction [6, 7, 8]. Within block two, the signal is converted to a form 
enabling quick and easy storage and classification of the voice word patterns obtained. Block three is responsible for the 
decision on the signal classification in a correct group or specific pattern from the pattern base [3]. 
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(signal parametrisation) Classification

 

Fig. 1. Speech recognition system design general diagram 

2. SPEECH SIGNAL PARAMETRISATION STAGES 

Speech signal conversion into a parametric form is necessary due to a great complexity of the speech signal digital 
form. Parameters obtained based on a full signal need to accurately reflect the speech signal physical features which we are 
interested in and to allow for the possibly most accurate classification, which in turn affect recognition of the words uttered. 
For this purpose, a number of parameters obtained based on time course, signal spectre or linear predictive coding [3]. 

At present, parameters most frequently used in the speech recognition process are the so-called cepstral coefficients 
which may be determined in two ways. The first of them involves the application of linear predictive coding (Fig. 2) (LPCCs, 
Linear Prediction Cepstral Coefficients). The other involves the application of Fourier transform (Fig. 3) (MFCCs - Mel-
Frequency Cepstral Coefficients) [10, 11].  
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Fig. 2. Block diagram of the LPCC evaluation algorithm (numbers among arrows mean vector lengths) 
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Fig. 3. Block diagram of the MFCC evaluation algorithm (numbers among arrows mean vector lengths) 

In both cases, the analysed speech signal ought to be converted into a correct form by means of using a FIR  
pre-emphasis filter and free from unnecessary data by means of determining word boundaries [6]. Fig. 4 shows the word signal 
of 'Property' following detection of its boundaries. This is the output signal by means of which further stages of determining 
cepstral coefficients will be presented. 

 

Fig. 4. 'Property' word signal 

The next step is the division of the signal into frames and the application of the windowing function (Fig. 5).  
This is performed in order to protect the instantaneous spectre against the occurrence of interference during Fournier 
transform. In order to get rid of additional harmonics in the instantaneous spectre, time course fragments are smoothed over at 
frame ends. The windowing operation may be recorded with the following formulas [9, 12]: 

 ( ) ( )t ty y n w n= ⋅⌢

 (1) 
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where:   
 w(n) - Hamming window, 

 
ty  - signal after windowing 

 ( )ty n
⌢

 - ( )n the signal sample value for the frame, 

 N - frame length, 

 n - sample number in the signal frame. 

 

Fig. 5. 'Property' word signal after application of Hamming window (dotted line indicates window shape).  
Horizontal lines separate individual signal frames 256-sample-long). 
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3. LPCCS 

Determination of cepstral coefficients with the first method requires LPCCs (Fig. 2). During their determination,  
we additionally obtain autocorrelation coefficients (AC) and reflection coefficients (REF). The optimal method of 
determination of the foregoing coefficients is the use of the two-stage Levinson-Durbin algorithm. 

The linear predictive coding technique is based on the assumption that a signal sample may be presented as a linear 
combination of p previous samples meaning that its value may be 'predicted' based on p preceding speech signal values. 
Assuming that we know the origin of the y signal, i.e. {y(n-p), …, y(n-1)}, we may develop a predicate described with the 
following formula: 
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where:   
 ( )ty n

⌢

 - ( )n th signal sample value for the frame, 

 αi - prediction coefficients. 
 
The algorithm used to determine the LPCCs which we are interested in is as follows [5]: 
 

1) Determination of autocorrelation coefficients with the following formula: 
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2) Determination of predictive coefficients of the p-th power: 
a) Setting initial values: 
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 b) Iterative execution of the following 6 steps m>1 until m=p-1: 
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where:   
 r(k) - autocorrelation coefficients (0 ≤ k ≤ p), 
 ai = aip - predictive coefficients (1 ≤ i ≤ p), 
 km - reflection coefficients (1 ≤m ≤ p), 
 p - number of predictive coefficients, 
 E, m - auxiliary parameters. 

 
Using the formula (3) and having appropriate LPC and original signal values, one may reproduce the signal seen in the 

following figure (Fig. 6). The signal was generated based on prediction regarding every fourth signal sample, with the use of 
the three preceding samples (p=3) of the original signal. 

 

Fig. 6. 'Property' word signal generated with the use of linear predictive coding for p=3. Bright colour indicates the original signal 
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In order to obtain LPCCs one needs to use recurrent dependency allowing to determine cepstral coefficients directly 
from predictive coefficients ai [5]: 

 1(1)c a=  (13) 
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where:   
 c(n) - n-th LPCC. 

 
Cepstrum c(n) has infinite length; thus, system recognition systems use from 8 to 12 coefficients. So generating eight 

LPCCs for each frame of the 'Property' word examined, we obtain the signal shown below. (Fig 7). 

 

Fig. 7. Graph showing LPPC values for individual frames of the signal examined 

4. MFCCS 

The other method of determining cepstral coefficients is based on the discreet Fourier transform (DFT) and Mel-scale 
filtration. MFCC determination stages have been shown in Fig. 3. 

The first step is to covert the signal from time form to frequency for in order to determine instantaneous spectres of the 
signal. This is carried out with the discreet Fourier transform [1, 2]: 
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where:   
 y’(k) - k-th signal value after DFT, 
 y(n) - n-th signal sample value after windowing, 

 
or the fast Fourier transform algorithm (FFT) involving recurrent DFT division into smaller (N/2) tasks [1]: 
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where:   
 y** (n) - values of even signal samples after windowing, 
 y*(n) - value of uneven signal samples after windowing. 

 
As a result of calculations involving complex number we receive the actual part Re(y’(k)) and the imaginary Im(y’(k)) of 

the transform which are used to determine the signal amplitude spectre (Fig. 8) based on the following dependency [5]: 
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( ) ( )' 2 ' 2 '( ) Re ( ) Im ( )     0,1,2, , / 2y k y k y k k N= + = …

 (18) 

 

Fig. 8. Spectre of the signal examined 

The signal spectre is multiplied by the triangular Mel filters bank the frequency response of which is supposed to 
simulate the behaviour of the human ear. The relation between the Mel scale and the Hertz scale is expressed with  
the following dependency (Fig. 9) [11]: 

 102595log 1
700
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mel
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 = + 
 

 (19) 

The filters are distributed in a way ensuring a 150mel distance between filter central frequencies and 300mel width of 
them. The number of the filters is usually 16 or 24 (Fig. 10). In order to obtain information on the location of a frequency 
expressed in Hertz for a given signal sample after DFT, the following formula is used: 

      k 0,1, , 1p
Hz

F
F k N

N
= ⋅ = −…  (20) 

where:   
 Fp - signal sampling frequency during acquisition. 
 

 

Fig. 9. Graph showing dependencies between Mel-scale values and Hertz-scale values 
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Fig. 10. Distribution of 16 Mel-scale filters [4, 9, 11] 

The filtration operation may be presented with the following formula [10] (Fig. 11): 

 
2

'' '

2

( ) ( ) ( )     1

n
m

m

m
m

b

k b

y m y k F k m M

∆+

∆
∆= −

= ⋅ ≤ ≤∑  (21) 

 

2( )
1        

( )

0                         
m

m
m

m

m

k b
k b

F k

k b
∆

− + ≤ ∆= 
 >

 (22) 

where:   
 y’’ (m) - frame signal after filtration, 
 bm - location of the m filter central frequency in the DFT field, 
 ∆m - width of the ,m  filter band where: 1 1m m mb b+ =∆ = − , 

 M - number of filters (16), 
 ( )

m
F k∆ - k - m filter value where k is the DFT index. 

 

Fig. 11. Signal examined after Mel-scale filtration 

The last step of determining MFCCs is finding the algorithm (Fig. 12) and reverse conversion of the signal into the time 
form with the reverse Fourier transform. These operations may be replaced with one dependency using the discreet cosine 
transform reducing the algorithm calculation complexity [4]: 
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where:   
 c(k) - k - th Mel–cepstrum coefficient for a specific frame. 
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In this way, we obtain the MFCCs shown in the following diagram (Fig. 13) in which 8 coefficients per each signal 
frame were determined. 

 

Fig. 12. Signal after finding the algorithm 

 

Fig. 13. Graph showing MFCC values for individual frames of the signal examined.  

5. CONCLUSIONS 

Cepstral coefficients are now the primary element of speech systems operation. As the research conducted shows,  
the application of MFCCs provides better classification results as compared to LPCCs. Still, from the algorithmical point of 
view, determination of MFCCs is far more difficult and complex with respect to calculations. Application of the FFT algorithm 
reduces the calculation complexity yet entails the need to divide the signal into frames of dimensions being a power of two 
(256-sample-long most frequently) and the need to remove incomplete frames. With current computation capacities, 
determination of MFCCs in real time does not constitute a significant problem, however. 
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