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colour image processing, impulsive noise removal,
colour image enhancement

Bogdan SMOLKA'

ON THE ADAPTIVE IMPULSIVE NOISE REMOVAL IN COLOR IMAGES

In this paper a novel adaptive filtering schemeirfigoulsive noise removal in colour images is préseénThe noise detection
algorithm is based on the concept of aggregatethrtises assigned to the pixels belonging to therifily window. The value
of the difference between the accumulated dist@sségned to the central sample and to the pixéi wie lowest rank, serves
as an indicator of the presence of impulses injedt¢o the image by the noise process. The outputhe® proposed filter
is a weighted mean of the central pixel of theefilig window and the vector median of its sampld® obtained results show that
the proposed filter outperforms existing impulsésaaemoval techniques for low noise contaminatiad can be used in various
applications in which the detail preserving redorctdf impulses play an important role.

1. INTRODUCTION

Computer vision systems very often use color infatian to sense the environment and therefore thedgprocessing
of color information is of great importance in \ars tasks of pattern recognition and image undwdtg. Unfortunately,
noise and other impairments associated with theisitipn and transmission can significantly degréue value of the color
information carried by digital images. It comesrd#fere as no surprise that the most common sigraeggsing task is noise
filtering. The reduction of noise is an essentiattppf any image processing based system, whekteefinal information
is used for human perception or for an automaspéation and analysis [1].

During image formation, acquisition, storage arghsmission many types of distortions limit the gyabf digital
images. Transmission errors, periodic or randomignoof the camera system during exposure, eleatramstability
of the image signal, electromagnetic interferensessor malfunctions, optic imperfections or agifighe storage material,
all disturb the image quality. In many practicatiations, images are corrupted by the so caitgullsive noise caused mainly
either by faulty image sensors or due to transmissirors resulting from man-made phenomena sudéhnét®on transients
in the vicinity of the receivers or even naturaépbmena such as lightning in the atmosphere.

In this paper the problem of impulsive noise rentdnacolor images is addressed and an efficienptida technique
capable of removing the impulsive noise and presgrimportant image features is proposed. The p#&perganized as
follows. In the next section a short overview o thasic multichannel filtering schemes is providEden, the new filtering
approach is described and its similarity to exastiiiitering schemes is discussed. Section 3 pres#m construction
of the new adaptive filtering scheme and secti@overs the experimental results performed on teages contaminated with
impulsive noise. The paper ends with a short caictu

2. VECTOR MEDIAN BASED FILTERS

A multichannel image is a mappir@2 — Z" representing a two-dimensional matrix of sibexN, consisting of

M- component samples (pixels¥;, = (X, X ,,--- ,)gm)DZz, where mdenotes the number of channels, (in the case of

standard color imagesn equals 3). Componentx, , for K=1,...,m andi=1,2,.. N, where N = N,[§, denotes

the number of image pixels, represent the colonebbvalues quantified into the integer domain.

The majority of the nonlinear, multichannel filtargended for the suppression of impulse noiseolorcimages are
based on the ordering of vectors in a sliding ffilkéndow. The output of these filters is definedths lowest ranked vector
according to a specific vector ordering technicie3].

Let the color images be represented in the commuosgd RGB space and Iéb(l,xz,... ,Xn} be 3-dimensional
vectors from the sliding filter windoWV, with X; being the central element M/ . The goal of the vector ordering is to
arrange the set df vectors{xl, ) ST Xn} belonging toW using some sorting criterion.

The most widely used ordering scheme is based ®magdlgregated distances assigned to the sampMé ddfined as
I :Z?:lp(xi,xj), where ,O(Xi,xj) is the distance between thg and X;. The increasing ordering of the quantities
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{roy rop Ty, where 1, denotes the k—th aggregated distance, generates the ordered setveofors

{Xap Xy -+ Xy -
One of the most important noise reduction techrsgaeheVector Median Filter (VMF), whose output is the vector
X1y from W, for which the sum of distances to all other vegtoelonging td/V is minimized, (Fig. 1). The VMF is very

efficient at reducing the impulses, preserves skdges and linear trends, however it does not predme image structures,
which are treated as noise and therefore gendtadly MF tends to produce blurry images.
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Fig. 1. The VMF output is the vectot Fig. 2. Construction of the filter output as a wead mean
L1 1)
@ of the central pixelX; and vector mediar)((l).

The drawback of the filtering methods based ondidering of samples according to the values ofapgregated
distances is that the derived filters operate unifg over the image and unnecessary replace piwdigh were not corrupted
by the noise process.

To alleviate this drawback many switching mechasisnere introduced into the structure of the imp@snoise
reduction filters [4,5]. The goal of a switchindidring scheme is to efficiently detect the noisyets and to replace them by
a noise removal filter output, while preserving thmeorrupted samples.

3. PROPOSED FILTERING DESIGN

The well known local statistic filters constituteclass of linear minimum mean squared error estireand they make
use of the local mean and variance of the inpuV¥et {Xl, Koy oves Xn} defining the filter output for the gray-scale ineagas
[6,7]

Y, =% +ta(x-%)=ax +(1-a)X, )

where )Ag is the arithmetic mean of the image pixels belogdp the filtering windowW centered at a pixel position and

a is a filter parameter estimated from the noisygmeEquation (1) can be rewritten using the nota¥p= X, , as
h=ax+ (1—0’))? =ax + (1_0'))21 =(Ira X(//lX1+X2+...+Xn) h, 2

with ¢, = (1-a +na)/(1-a) and the local statistic filter defined by (1) edduced to theentral weighted average, with
a weighting coefficientt//; . In this way the set of weightét/ll,l,l,...,l} is assigned to the set of pixels in the filtering
window { X, X ..., X.} .

If the weighting is applied to the ordered sequenicgray-scale samples belonging \¥ : {X(l), oo Xigyreeon X(n)} ,

where X, and X, are the minimal and maximal pixel values axd,, (4 = (n+1)/2) denotes the median of the input

n 1 n
set, theny1=(zk=1¢/k) DX -

Taking the weighting sdil,1,...,¢,,...,1}, special emphasis is given to the median of thatisetx(m . Hence

ure
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n . ¢,-1 .
- (W—J“{W—J X = A=)+ ax,,, ®

which is a compromise between the med)q% and the average?1 controlled again by the paramet@r.

Let us now apply a weighting structure defined by Weights{l,O,...,lﬂﬂ,... ,0}. Such a setting of the weights
leads to the output defined by

%= g et = @ A-a,, @
U
If we work on the set of ordered vect({rx(l), Xy -+ X(n)} then (4) can be rewritten as
_ 1 _
y, = H(Xl +Y X (1)) =ax,+(1-a)x 5)
1

where the weighting set is defined 4g1,0,...,0,1,0,..,0} in which the weight//, is assigned to theector median Xa)

of the input set fronWW and1l is assigned to pixeX;.

Clearly, the filtering structure defined by (3)sisnilar to approach defined by (1), however, asaior is to construct
a filter capable of removing impulsive noise, igteof the mean value, the VMF output is used ardrise intensity
estimation mechanism is regulated by the coeffic@&n(Fig 2). In this way, the proposed technique i®agromise between
the VMF and the identity operation. When an impugseresent, then the value af should be 0, otherwise it should be 1.

The filtering efficiency of the proposed scheme afgfs strongly on the accuracy of the impulse detect
The straightforward choice would be to detect thwulses by measuring the difference between thératepixel of
the filtering window and the vector median of iergples. However, such an approach is not suitalslendise detection,
as the image texture and edges can be easily dreatenoise, which leads to an extensive image s$nmaptcaused by
unnecessary pixel replacement by the vector median.

The proposed switching filter is based on the déffiee between the aggregated distafjcassigned to the central pixel
of the filtering window and the value cr{l) corresponding to the vector median output. Intoiay the notationr, = r, and

Iy = 'm» the measure of pixel distortiafy is then expressed ag; =, —I..

Figure 3 shows an example of the detected noisegusi part of the test image LENA. The visual corguer
of the noise map composed of the valuesrpfand the differences between the noisy and origiestl image confirms
the good noise detection ability of the proposepragach. The map of the detected noise corresposgswell with the real
corruption derived from the noisy and clean images.

To discriminate between pixels corrupted by impuisese and the undisturbed samples, a global tbigisiy scheme
could be applied. However, the thresholding of tioése map would lead to many errors which wouldiltein retaining
the impulses and unnecessary undisturbed pixehcepient. To alleviate the problems connected wéttd lthresholding,
a soft scheme has been applied. Utilizing therfiiteframework expressed by Eq. (5), we can usathige map as a distortion

measure and make th& coefficient dependent on the values of the nomensity I, . In this way, every pixel will be
replaced by the weighted mean of the central k& and its vector median.
Of course, the efficiency of such a scheme depéedsily on the proper choice of th@& coefficient. Experimental

results indicates that satisfactory results canabeieved using various kernel functions known frtm nonparametric
estimation theory. Therefere, for the presentatibmhe filter efficiency the following form of th& coefficient has been

chosen:g = exp{—(rd /h)z} , where h is a normalization parameter.
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(b) noisy image (c) real contaation

(d) map ofr, (e) map offr, (f) detected noisef,, — I,

Fig. 3. lllustration of the noise detection schetast image (a), noisy image (b), injected impuisise noise (c). Below the mapsif, I,

and their differencd’y = I, — I is presented (d-f)

4. EXPERIMENTS
In order to evaluate the effectiveness of the newatching filter a set of test images (Fig. 4) veastaminated with
three kinds of impulsive noise. In the first twoiseomodels, the noisy pixels; ={X,, X, X 4 are defined aXg = Py
with probability 77, and Qq with probability1— 77, where Qq denotes the] -th component of the original pixel at positibn
and the contamination componeat, is a random variable.

If the variable 0 can take any discrete value in the raf@e255] the uniform or random-valued impulsive noise

model is obtained, which will be denoted in thip@aas NM1, (this kind of noise was used to contate the test images
presented in Fig. 3). Ip takes only the value 0 or 255, the salt & peppdixed-valued impulse noise is modeled and it will

be denoted as NM2. The third kind of noise denoted NM3 is defined asX, =0, with probability (1- p),
{p, 0., 0,; with probability p, [P, {0'1' o 0.3} with probability p, Ep,{ql, fo 0,; with probability p,[p and
{Ps P, O} with probabilityp, [P, [1, 8], where p is the noise intensity angd,,..., p, are corruption probabilities of
each color channel, so thifpk =1. The variableso, , K =1,...,4 take on the value 0 or 255 with equal probabaityl
p, =0.25fr k=1,...,4.

U'I'I'ERFLY PARROTS FLOWER FRUITS RAFTING LOCOMOTIVE MOTORBIKES

LENA GOLDHILL

Fig. 4. Test images used for the simulations

For the measurement of the restoration quality,cthmonlyPeak Signal to Noise Ratio (PSNR) was used and for
the evaluation of the detail preservation capaedibf the proposed filtering design tikean Absolute Error (MAE) has been
utilized.
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Fig. 5. Dependence of the PSNR on theparameter for the Fig. 6. Dependence of the mean value$ of I, and I
LENA test image. The dots show the maxima of thoéspl

and indicate the optimén values.

on the noise intensity) for the LENA image.

Figure 5 shows the dependence of the PSNR orhtremoothing parameter for the LENA test image coiatad

by the noise model NM1. As can be observed, thenaptvalue of the smoothing parametr for which the PSNR measure
attains the maximal value depends significantlytte contamination levep, defined as the percentage of corrupted pixels.

Figure 6 depicts the dependence of the mean valués, I, andr, denoted ad,, f andf, on the contamination level

p. As can be observed, the increase of the meansvafuber, is linearly dependent on the noise leyg| which enables to

estimate the noise level knowing the mean valu@doﬂerived from its histogram. Figure 7 shows thatlthear dependence

of 1, is similar for the commonly used test images (Eig.
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Fig. 7. Dependence d?d on the noise intensityd .

lena
goldhill
butterfly
parrots
flower
fruits

/

0.1

0.3

p

0.4

h*

lena
goldhill
butterfly
parrots
flower
fruits

i

0.1

0.2

Fig. 8. Dependence of the optimal paramdftléron the noise

intensity .

Figure 8 exhibits the dependence of the optimalealf the inverse of the optimal smoothing paramethich will
be denoted ah =1/ on the noise intensityp . This dependence is also of linear character, hvkiables to combine

the values ofl?d andh as they are both linearly dependent on the notemsity. For the experiments 9 test images depicte

in Fig. 1 and distorted by 3 noise model were uSdte experimentally found formula, allowing to esdite the optimal
normalization parametdn is then, (Fig. 9):

h" =0.00398%, + 0.0177,h" =/

(6)
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Fig. 9. Dependence between the optimal smoothimymterh* and the mean valuﬁd : (a) linear dependence betwedan and noise

intensity P, (b) linear dependence betwe@cp and P, (c) linear dependence betwebn and P . In the plots (a) and (b) the standard

deviations are shown and in plot (c) all data podslivered by the evaluation of 9 test images.(Ejgontaminated by three noise types
of various intensities are depicted.

The effectiveness of the proposed filtering desiges compared with a set of the most efficient noismoval
switching filters evaluated in the extensive sur{@ly Adaptive Center-Weighted Directional Distance Filter, (ACWDDF),
Peer Group Filter, (PGF), Sgma Directional Distance Filter based on Rank, (SDDFr), Adaptive Center-Weighted Vector
Median Filter, (ACWVMF), Adaptive Center-Weighted Vector Directional Filter, (ACWVDF), Modified Center-Weighted
Vector Median Filter, (MCWVMF), Sigma Directional Distance Filter based on Mean, (SDDFm), Sgma Vector Median
Filter based on Rank, (SVMFr) andFast Fuzzy Noise Reduction Filter, (FFNRF).
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Fig. 10. Comparison of the proposed noise redu¢gohnique in terms of PSNR and MAE with other deingisnethods,
(colour test image RAFTING contaminated by the umifmoise NM1).

Analyzing the plot presented in Fig. 10 which shdtws filtering results obtained for the test calmage RAFTING
contaminated with uniform noise NM1 of intensity0®, 0.1 and 0.15, it is clear that the proposettriilg approach
significantly outperforms in terms of the PSNR measthe most efficient filtering designs known imetliterature [8].
The MAE measure is similar to the analyzed filteshich is due to the smoothing introduced by the /i the applied
weighting scheme of the proposed filter. The extglbehavior of the new filter is also confirmedriab. 1 which summarizes
the results obtained for the RAFTING, LOCOMOTIVEdamMOTORBIKES test images. The subjective analydis o
the filtering results offered by the new filter atfte methods used for comparisons is provided ¢n Ei, which shows
the restored cDNA image. As can be observed the teehnique removes the impulses injected by theenprocess and
preserves the fine image details.
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cDNA image proposed filter output ACWDDF output P@QRput

Fig. 11. Comparison of the efficiency of the prombfker with the SANRFand FANRF noise removal tecfu@s when restoring a noisy
cDNA image

Table 1. Comparison of the filtering efficiency b&tproposed filter as compared with the best §leeraluated in [8] for the RAFTING,
LOCOMOTIVE and MOTORBIKES test images contaminatedh®yuniform noise NM1 with p=0.1

IMAGE RAFTING LOCOMOTIVE MOTORBIKES
FILTER MAE PSNR MAE PSNR MAE PSNR
PROPOSED 1.43 33.44 4.05 25.64 1.79 31.40
ACWDDF 1.30 33.31 2.94 26.55 1.62 31.64

PGF 1.13 32.42 4.16 24.58 1.60 30.2¢
SDDFH 1.24 33.30 2.82 26.63 1.33 32.17
ACWVMF 1.06 32.68 3.71 24.71 1.48 30.29
ACWVDF 1.63 31.59 3.35 25.62 2.14 29.28
MCWVMF 1.08 30.95 2.01 25.99 1.19 29.08
SDDFm 1.77 32.02 3.67 25.82 1.99 30.51
SVMFr 1.48 32.14 3.54 25.21 1.61 30.28
FENRF 1.23 31.43 4.61 23.09 1.68 29.15

5. CONCLUSIONS

In the paper an adaptive filtering design for ingie noise removal is proposed. The proposed mimsector together
with the adaptive scheme of choosing the optim#levaf the weighting parameter used in the constrncof the filter
exhibits very good denoising properties outperfoigrithe known filtering solutions. The simplicity thfe new algorithm and

its computational speed makes the noise removahadevery useful in the preprocessing of color insagerrupted by
impulse noise.
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