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ON THE ADAPTIVE IMPULSIVE NOISE REMOVAL IN COLOR IMAGES 

In this paper a novel adaptive filtering scheme for impulsive noise removal in colour images is presented. The noise detection 
algorithm is based on the concept of aggregated distances assigned to the pixels belonging to the filtering window. The value  
of the difference between the accumulated distance assigned to the central sample and to the pixel with the lowest rank, serves  
as an indicator of the presence of impulses injected into the image by the noise process. The output of the proposed filter  
is a weighted mean of the central pixel of the filtering window and the vector median of its samples. The obtained results show that 
the proposed filter outperforms existing impulse noise removal techniques for low noise contamination and can be used in various 
applications in which the detail preserving reduction of impulses play an important role. 

1. INTRODUCTION 

Computer vision systems very often use color information to sense the environment and therefore the correct processing 
of color information is of great importance in various tasks of pattern recognition and image understanding. Unfortunately, 
noise and other impairments associated with the acquisition and transmission can significantly degrade the value of the color 
information carried by digital images. It comes therefore as no surprise that the most common signal processing task is noise 
filtering. The reduction of noise is an essential part of any image processing based system, whether the final information  
is used for human perception or for an automatic inspection and analysis [1]. 

During image formation, acquisition, storage and transmission many types of distortions limit the quality of digital 
images. Transmission errors, periodic or random motion of the camera system during exposure, electronic instability  
of the image signal, electromagnetic interferences, sensor malfunctions, optic imperfections or aging of the storage material,  
all disturb the image quality. In many practical situations, images are corrupted by the so called impulsive noise caused mainly 
either by faulty image sensors or due to transmission errors resulting from man-made phenomena such as ignition transients  
in the vicinity of the receivers or even natural phenomena such as lightning in the atmosphere. 

In this paper the problem of impulsive noise removal in color images is addressed and an efficient adaptive technique 
capable of removing the impulsive noise and preserving important image features is proposed. The paper is organized as 
follows. In the next section a short overview of the basic multichannel filtering schemes is provided. Then, the new filtering 
approach is described and its similarity to existing filtering schemes is discussed. Section 3 presents the construction  
of the new adaptive filtering scheme and section 4 covers the experimental results performed on test images contaminated with 
impulsive noise. The paper ends with a short conclusion. 

2. VECTOR MEDIAN BASED FILTERS 

A multichannel image is a mapping 2 m→Z Z  representing a two-dimensional matrix of size 1 2N N×  consisting of 

m − component samples (pixels), 2
1 2= ( , , , )i i i imx x x ∈x … Z , where m denotes the number of channels, (in the case of 

standard color images, m  equals 3). Components ikx , for = 1, ,k m…  and =1,2, ,i N… , where 1 2=N N N⋅  denotes  

the number of image pixels, represent the color channel values quantified into the integer domain. 
The majority of the nonlinear, multichannel filters intended for the suppression of impulse noise in color images are 

based on the ordering of vectors in a sliding filter window. The output of these filters is defined as the lowest ranked vector 
according to a specific vector ordering technique [2, 3]. 

Let the color images be represented in the commonly used RGB space and let { }1 2, , , nx x x…  be 3-dimensional 

vectors from the sliding filter window ,W  with 1x  being the central element in W . The goal of the vector ordering is to 

arrange the set of n  vectors 1{x , 2x , … , }nx  belonging to W  using some sorting criterion. 

The most widely used ordering scheme is based on the aggregated distances assigned to the samples of W defined as 

=1
= ( , ),

n

i i jj
r ρ∑ x x  where ( , )i jρ x x  is the distance between the ix  and jx . The increasing ordering of the quantities 
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(1) (2) ( ){ , , , }nr r r… , where ( )kr denotes the thk −  aggregated distance, generates the ordered set of vectors 

(1) (2) ( ){ , , , }nx x x… . 

One of the most important noise reduction techniques is the Vector Median Filter (VMF), whose output is the vector 

(1)x  from ,W  for which the sum of distances to all other vectors belonging to W  is minimized, (Fig. 1).  The VMF is very 

efficient at reducing the impulses, preserves sharp edges and linear trends, however it does not preserve fine image structures, 
which are treated as noise and therefore generally the VMF tends to produce blurry images.  

 

 

 

Fig. 1. The VMF output is the vector (1)x . 

 

Fig. 2. Construction of the filter output as a weighted mean 

of the central pixel 1x and vector median (1)x . 

The drawback of the filtering methods based on the ordering of samples according to the values of the aggregated 
distances is that the derived filters operate uniformly over the image and unnecessary replace pixels, which were not corrupted 
by the noise process. 

To alleviate this drawback many switching mechanisms were introduced into the structure of the impulsive noise 
reduction filters [4,5]. The goal of a switching filtering scheme is to efficiently detect the noisy pixels and to replace them by  
a noise removal filter output, while preserving the uncorrupted samples. 

3. PROPOSED FILTERING DESIGN 

The well known local statistic filters constitute a class of linear minimum mean squared error estimators and they make 

use of the local mean and variance of the input set 1 2= { , , , }nW x x x…  defining the filter output for the gray-scale images as 

[6,7]  

 ( )ˆ ˆ ˆ= = (1 ) ,i i i i i iy x x x x xα α α+ − + −  (1) 

where ˆix  is the arithmetic mean of the image pixels belonging to the filtering window W  centered at a pixel position i  and 

α  is a filter parameter estimated from the noisy image. Equation (1) can be rewritten using the notation 1=ix x , as  

 ( )1 1 1 1 1 2ˆ ˆ= (1 ) = (1 ) = (1 ) / ,i i ny x x x x x x x nα α α α α ψ+ − + − − + + +…  (2) 

with 1 = (1 )/(1 )nψ α α α− + −  and the local statistic filter defined by (1) is reduced to the central weighted average, with  

a weighting coefficient 1ψ . In this way the set of weights 1{ ,1,1, ,1}ψ …  is assigned to the set of pixels in the filtering 

window 1 2{ , , , }nx x x… .  

If the weighting is applied to the ordered sequence of gray-scale samples belonging to W : (1) ( ) ( ){ , , , , }nx x xµ… … , 

where (1)x  and ( )nx  are the minimal and maximal pixel values and ( )x µ , ( = ( 1)/2)nµ +  denotes the median of the input 

set, then ( ) 1

1 ( )=1 =1
= .

n n

k k kk k
y xψ ψ

−

∑ ∑  

Taking the weighting set {1,1, , , ,1}µψ… … , special emphasis is given to the median of the input set ( )x µ . Hence  
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 1 1 ( ) 1 ( )

1
ˆ ˆ= = (1 ) ,

1 1

n
y x x x x

n n
µ

µ µ
µ µ

ψ
α α

ψ ψ
   −

+ − +      + − + −   
 (3) 

which is a compromise between the median ( )x µ  and the average 1̂x  controlled again by the parameter α . 

Let us now apply a weighting structure defined by the weights {1,0, , , ,0}µψ… … . Such a setting of the weights 

leads to the output defined by  

 ( )1 1 ( ) 1 ( )

1
= = (1 ) .

1
y x x x xµ µ µ

µ

ψ α α
ψ

+ + −
+

 (4) 

If we work on the set of ordered vectors (1) (2) ( ){ , , , }nx x x…  then (4) can be rewritten as  

 ( )1 1 1 (1) 1 (1)
1

1
= = (1 ) ,

1
ψ α α

ψ
+ + −

+
y x x x x  (5) 

where the weighting set is defined as: 1{ ,0, ,0,1,0, ,0}ψ … …  in which the weight 1ψ  is assigned to the vector median 
(1)x   

of the input set from W  and 1 is assigned to pixel 1.x  

Clearly, the filtering structure defined by (3) is similar to approach defined by (1), however, as our aim is to construct  
a filter capable of removing impulsive noise, instead of the mean value, the VMF output is used and the noise intensity 
estimation mechanism is regulated by the coefficient ,α (Fig 2). In this way, the proposed technique is a compromise between 

the VMF and the identity operation. When an impulse is present, then the value of α  should be 0, otherwise it should be 1. 
The filtering efficiency of the proposed scheme depends strongly on the accuracy of the impulse detection.  

The straightforward choice would be to detect the impulses by measuring the difference between the central pixel of  
the filtering window and the vector median of its samples. However, such an approach is not suitable for noise detection,  
as the image texture and edges can be easily treated as noise, which leads to an extensive image smoothing, caused by 
unnecessary pixel replacement by the vector median. 

The proposed switching filter is based on the difference between the aggregated distance 1r  assigned to the central pixel 

of the filtering window and the value of (1)r  corresponding to the vector median output. Introducing the notation: 1 = cr r  and 

(1) = mr r , the measure of pixel distortion dr  is then expressed as: =d c mr r r− . 

Figure 3 shows an example of the detected noise using a part of the test image LENA. The visual comparison  

of the noise map composed of the values of dr  and the differences between the noisy and original test image confirms  

the good noise detection ability of the proposed approach. The map of the detected noise corresponds very well with the real 
corruption derived from the noisy and clean images. 

To discriminate between pixels corrupted by impulse noise and the undisturbed samples, a global thresholding scheme 
could be applied. However, the thresholding of the noise map would lead to many errors which would result in retaining  
the impulses and unnecessary undisturbed pixel replacement. To alleviate the problems connected with hard thresholding,  
a soft scheme has been applied. Utilizing the filtering framework expressed by Eq. (5), we can use the noise map as a distortion 

measure and make the α  coefficient dependent on the values of the noise intensity dr . In this way, every pixel will be 

replaced by the weighted mean of the central pixel of W and its vector median. 
Of course, the efficiency of such a scheme depends heavily on the proper choice of the α  coefficient. Experimental 

results indicates that satisfactory results can be achieved using various kernel functions known from the nonparametric 
estimation theory. Therefere, for the presentation of the filter efficiency the following form of the α  coefficient has been 

chosen: ( ){ }2
= exp / ,dr hα −  where h  is a normalization parameter. 
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(a) original image (b) noisy image (c) real contamination 

   
(d) map of cr  (e) map of mr  (f) detected noise: c mr r−  

Fig. 3. Illustration of the noise detection scheme: test image (a), noisy image (b), injected impulse noise noise (c). Below the maps of cr , mr  

and their difference =d c mr r r−  is presented (d-f) 

4. EXPERIMENTS 

In order to evaluate the effectiveness of the novel switching filter a set of test images (Fig. 4) was contaminated with 

three kinds of impulsive noise. In the first two noise models, the noisy pixels 1 2 3= { , , }i i i ix x xx  are defined as iq iqx ρ=  

with probability π , and iqo  with probability 1 ,π−  where iqo  denotes the q -th component of the original pixel at position i  

and the contamination component iqρ  is a random variable. 

If the variable ρ  can take any discrete value in the range [0,255] the uniform or random-valued impulsive noise 

model is obtained, which will be denoted in this paper as NM1, (this kind of noise was used to contaminate the test images 
presented in Fig. 3). If ρ  takes only the value 0 or 255, the salt & pepper or fixed-valued impulse noise is modeled and it will 

be denoted as NM2. The third kind of noise denoted as NM3 is defined as i i=x o with probability (1 ),p−  

1 2 3
{ , , }i i io oρ with probability 1 ,p p⋅  21 3

{ , , }i i io oρ  with probability 2 ,p p⋅ 21 3
{ , , }i i io oρ  with probability 3p p⋅  and 

4 4 4{ , , }i i iρ ρ ρ  with probability 4 ,p p⋅ [1, 8], where p  is the noise intensity and 1 4, ,p p…  are corruption probabilities of 

each color channel, so that 
4

1
= 1pκ∑ . The variables iκρ , =1, ,4κ …  take on the value 0 or 255 with equal probability and 

= 0.25pκ  for =1, ,4κ … .  

 

    
LENA GOLDHILL BUTTERFLY PARROTS FLOWER FRUITS RAFTING LOCOMOTIVE MOTORBIKES 

Fig. 4. Test images used for the simulations 

For the measurement of the restoration quality, the commonly Peak Signal to Noise Ratio (PSNR) was used and for  
the evaluation of the detail preservation capabilities of the proposed filtering design the Mean Absolute Error (MAE) has been 
utilized. 
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Fig. 5. Dependence of the PSNR on the h  parameter for the 
LENA test image. The dots show the maxima of the plots 

and indicate the optimal h  values. 

Fig. 6. Dependence of the mean values of ,mr cr  and dr  

on the noise intensity p  for the LENA image. 

Figure 5 shows the dependence of the PSNR on the h  smoothing parameter for the LENA test image contaminated  

by the noise model NM1. As can be observed, the optimal value of the smoothing parameter h , for which the PSNR measure 
attains the maximal value depends significantly on the contamination level ,p  defined as the percentage of corrupted pixels. 

Figure 6 depicts the dependence of the mean values of cr , mr  and dr  denoted as ̂cr , m̂r  and d̂r  on the contamination level 

.p  As can be observed, the increase of the mean values of the dr  is linearly dependent on the noise level p , which enables to 

estimate the noise level knowing the mean value of d̂r  derived from its histogram. Figure 7 shows that the linear dependence 

of dr  is similar for the commonly used test images (Fig. 1). 

 

  

Fig. 7. Dependence of ̂dr  on the noise intensity p . Fig. 8. Dependence of the optimal parameter 
*h  on the noise 

intensity .p  

Figure 8 exhibits the dependence of the optimal value of the inverse of the optimal smoothing parameter, which will  

be denoted as * = 1/h h  on the noise intensity p . This dependence is also of linear character, which enables to combine  

the values of ̂dr  and *h  as they are both linearly dependent on the noise intensity. For the experiments 9 test images depicted 

in Fig. 1 and distorted by 3 noise model were used. The experimentally found formula, allowing to estimate the optimal 
normalization parameter h  is then, (Fig. 9): 

 * *ˆ= 0.00398 0.0177, =1/ .dh r h h⋅ +  (6) 
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(a) (b) (c) 

Fig. 9. Dependence between the optimal smoothing parameter 
*h  and the mean value d̂r : (a) linear dependence betweeen 

*h  and noise 

intensity p , (b) linear dependence between d̂r  and p , (c) linear dependence between 
*h  and p . In the plots (a) and (b) the standard 

deviations are shown and in plot (c) all data points delivered by the evaluation of 9 test images (Fig. 1) contaminated by three noise types  
of various intensities are depicted. 

The effectiveness of the proposed filtering design was compared with a set of the most efficient noise removal 
switching filters evaluated in the extensive survey [8]: Adaptive Center-Weighted Directional Distance Filter, (ACWDDF), 
Peer Group Filter, (PGF), Sigma Directional Distance Filter based on Rank, (SDDFr), Adaptive Center-Weighted Vector 
Median Filter, (ACWVMF), Adaptive Center-Weighted Vector Directional Filter, (ACWVDF), Modified Center-Weighted 
Vector Median Filter, (MCWVMF), Sigma Directional Distance Filter based on Mean, (SDDFm), Sigma Vector Median 
Filter based on Rank, (SVMFr) and Fast Fuzzy Noise Reduction Filter, (FFNRF).  

 

  

Fig. 10. Comparison of the proposed noise reduction technique in terms of PSNR and MAE with other denoising methods,  
(colour test image RAFTING contaminated by the uniform noise NM1). 

Analyzing the plot presented in Fig. 10 which shows the filtering results obtained for the test color image RAFTING 
contaminated with uniform noise NM1 of intensity 0.05, 0.1 and 0.15, it is clear that the proposed filtering approach 
significantly outperforms in terms of the PSNR measure the most efficient filtering designs known in the literature [8].  
The MAE measure is similar to the analyzed filters, which is due to the smoothing introduced by the VMF in the applied 
weighting scheme of the proposed filter. The excellent behavior of the new filter is also confirmed in Tab. 1 which summarizes 
the results obtained for the RAFTING, LOCOMOTIVE and MOTORBIKES test images. The subjective analysis of  
the filtering results offered by the new filter and the methods used for comparisons is provided in Fig. 11, which shows  
the restored cDNA image. As can be observed the new technique removes the impulses injected by the noise process and 
preserves the fine image details. 
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cDNA image proposed filter output ACWDDF output PGF output 

Fig. 11. Comparison of the efficiency of the proposed filter with the SANRFand FANRF noise removal techniques when restoring a noisy 
cDNA image 

Table 1. Comparison of the filtering efficiency of the proposed filter as compared with the best filters evaluated in [8] for the RAFTING, 
LOCOMOTIVE and MOTORBIKES test images contaminated by the uniform noise NM1 with p=0.1 

IMAGE RAFTING LOCOMOTIVE MOTORBIKES 
FILTER MAE PSNR MAE PSNR MAE PSNR 

PROPOSED 1.43 33.44 4.05 25.64 1.79 31.49 
ACWDDF 1.30 33.31 2.94 26.55 1.62 31.64 

PGF 1.13 32.42 4.16 24.58 1.60 30.29 
SDDFr 1.24 33.30 2.82 26.63 1.33 32.17 

ACWVMF 1.06 32.68 3.71 24.71 1.48 30.29 
ACWVDF 1.63 31.59 3.35 25.62 2.14 29.28 
MCWVMF 1.08 30.95 2.01 25.99 1.19 29.08 

SDDFm 1.77 32.02 3.67 25.82 1.99 30.51 
SVMFr 1.48 32.14 3.54 25.21 1.61 30.28 
FFNRF 1.23 31.43 4.61 23.09 1.68 29.15 

5. CONCLUSIONS 

In the paper an adaptive filtering design for impulsive noise removal is proposed. The proposed noise detector together 
with the adaptive scheme of choosing the optimal value of the weighting parameter used in the construction of the filter 
exhibits very good denoising properties outperforming the known filtering solutions. The simplicity of the new algorithm and 
its computational speed makes the noise removal method very useful in the preprocessing of color images corrupted by 
impulse noise. 
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