PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie naprężeń własnych termicznych w załączach ceramiczno - metalowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Modeling of residual thermal stresses in ceramic - metals joints
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono zagadnienia modelowania naprężeń własnych w złączach ceramiczno-metalowych (C-M). Zawarte w niej zostały wyniki prac własnych oraz światowych ośrodków badawczych, dotyczące naprężeń własnych w spajanych złączach C-M, w kompozytach ceramicznych z metaliczną osnową oraz w warstwach powierzchniowych ceramiczno-metalowych. Przy modelowaniu naprężeń wykorzystano techniki numeryczne oparte głównie na metodzie elementów skończonych. Podano szereg przykładów analiz numerycznych naprężeń własnych w złączach C-M oraz opisano możliwości wykorzystania metod obliczeniowych naprężeń własnych w rzeczywistych konstrukcjach i w opracowywaniu technologii złączy. W szczególności zaprezentowano możliwości oceny stanu naprężeń z wykorzystaniem zaawansowanych metod obliczeniowych, takich jak metoda homogenizacji połączona z metodą elementów skończonych oraz cyfrowym przetwarzaniem obrazów. Przedstawiono rezultaty badań własnych przemieszczeń i odkształceń w złączach C-M oraz kompozytach ceramiczno-metalowych z wykorzystaniem metod hybrydowych integrujących wyniki pomiaru doświadczalnych oraz modelowania numerycznego. Na podstawie prac własnych oraz literatury światowej ukazano specyfikę modelowania naprężeń w złączach materiałów różnoimiennych oraz zaproponowano ogólną metodykę analizy naprężeń własnych w złączach spajanych C-M za pomocą metody elementów skończonych. Pracę uzupełniają liczne przykłady analizy numerycznej złączy, kompozytów oraz warstw powierzchniowych stosowanych w konstrukcjach ceramiczno -metalowych.
EN
The paper describes several aspects of residual stress modelling in ceramic-metal (C-M) joints. It covers the results of residual stress investigations in ceramic-metal joints, metal matrix composites (MMC) and ceramic-metal surface layers conducted by the author and other world research centers. Numerical modelling of residual stresses has been primarily based on the finite element method (FEM). Several problems of numerical stress analysis in C-M joints have been described together with examples of FEM modelling in technology of real structures used in engineering applications. In detail, the homogenization method supported by digital image processing has been used in residual stress estimation. Moreover, the hybrid-based approach integrating experimental and numerical results of displacement and strain investigations in C-M joints has been presented. The main steps of residual stress modelling in joints composed of dissimilar materials have been characterized together with the methodology of FEM calculation in C-M joints. The analysis of residual stresses is illustrated with many examples of numerical models of C-M joints, MMC composites and ceramic-metal surface layers.
Rocznik
Tom
Strony
1--170
Opis fizyczny
Bibliogr. 168 poz., tabl., rys.
Twórcy
autor
  • Instytut Technik Wytwarznia
Bibliografia
  • [1] Orłoś Z.: Naprężenia cieplne. PWN, Warszawa 1991.
  • [2] Cao H.C., Thouless M.D., Evans A.G.: Residual stresses and cracking in brittle solids bonded with a thin ductile layer. Acta Metallurgies 1988, vol. 36, No 8, s. 2037-2046.
  • [3] Shi N., Arsenault R.J.: Plastic flow in SiC/Al composites-strengthening and ductility. Annu. Rev. Mater. Sci., 1994, 24, s. 321-357.
  • [4] Burakowski T., Wierzchoń T.: Inżynieria powierzchni metali. WNT, Warszawa 1995.
  • [5] Golański D.: Wpływ rozkładu temperatury oraz kształtu złącza na stan naprężeń w spajanych kołowosymetrycznych elementach ceramiki korundowej ze stalą. Praca doktorska, Politechnika Warszawska, Warszawa 1994.
  • [6] Mark R., Lewin G.: Stress analysis in the design of ceramic seals. Ceramic Bulletin, 1965, vol. 44, No 8.
  • [7] Golański D: Temperature distribution in a cylindrical Al2O3-steel joint during the vacuum brazing cycle. J. of Materials Processing Technology, 1996, vol. 56, s. 945-954.
  • [8] Rabin B.H., Williamson R.L., Suresh S.: Fundamentals of residual stresses in joints between dissimilar materials. Ceramic Bulletin, 1995.
  • [9] Levy A.: Thermal residual stresses in ceramic-to-metal brazed joints. J. Am. Ceram. Soc., 1991, vol. 74, No 9, s. 2141-2147.
  • [10] Piechnik S.: Wytrzymałość materiałów dla wydziałów budowlanych. PWN, Warszawa 1978.
  • [11] Rock R.H., Broutman L.J.: Metallic Matrix Composites. In: Kreider K.G. (ed): Composite Materials. Vol. 4, Academic Press, New York 1974.
  • [12] Kurz W., Sahm P.R.: Gerichtet erstarrte eutektische Werkstoffe. Springer Verlag, Berlin 1975.
  • [13] Clyne T.W., Withers P.J.: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge 1993.
  • [14] Timoshenko S.P., Goodier J.N.: Theory of Elasticity, McGraw-Hill, New York 1970.
  • [15] Chawla K.K.: Composite materials: Science and engineering. Springer Verlag, New York 1987.
  • [16] Cao X.Q., Vassen R., Stoever D.: Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 2004, 24, s. 1-10.
  • [17] Wachtman J.B., Haber R.A.: Ceramic films and coatings. Noyes Publications, New Jersey 1993.
  • [18] Park J.-W., Mendez P.P., Eagar T.W.: Strain energy distribution in ceramic-to-metal joints. Acta Materialia, 2002, 50, s. 883-899.
  • [19] Clyne T.W.: Encyclopedia of Materials: Science and Technology. §4.1 - Elasticity and Residual Stresses. Withers PJ. (ed.), Elsevier Science, London 2001.
  • [20] Ohring M. : The materials science of thin films. Academic Press, New York 1992.
  • [21] Houdeau D., Steckenborn A., Zhang J.-M. Kiesewetter L.: Eigenspannungen in Mikrosystemen. Mat. Conf. Residual Stresses. DGM Informationsgesellschaft Verlag, 1993.
  • [22] Teixeira V.: Residual stress and cracking in thin PVD coatings. Vacuum, 2002, 64, s. 393-399.
  • [23] Kristoffersen H., Vomacka P.: Influence of process parameters for induction hardening on residual stresses, Materials & Design., 2001, vol. 22, No 8, s. 637-644.
  • [24] Mellali M., Fauchais P., Grimaud A.: Influence of substrate roughness and temperature on the adhesion/cohesion of alumina coatings. Surface and Coatings Technology, 1996, vol. 81, s. 275-286.
  • [25] Araujo P., Chicot D., Staia M., Lesage J.: Residual stresses and adhesion of thermal spray coatings. Surface Engineering, 2005, vol. 21, No 1, s. 35-40.
  • [26] Welzel U., Ligot J., Lamparter P., Vermeulen A.C., Mittemeijer E.J.: Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Cryst., 2005, 38, s. 1-29.
  • [27] Cullity B.D.: Podstawy dyfrakcji promieni rentgenowskich. PWN, Warszawa 1964.
  • [28] Auerswald E, Kampfe B.: X-ray analysis of residual stresses in AIN-Cu-joints. Proc. 4th European Conf. Residual Stresses, ECRS 4, Cluny en Bourgogne, 1996, s. 719-724.
  • [29] Kobayashi H., Arai Y., Oguiso K., Sasaki K., Sato T., Okabe N.: Measurement and evaluation of residual stresses in ceramics-metal joints by X-ray method. Residual Stresses-III, Science and Technology, ICRS3, vol. 2. Ed. by H. Fujiwara, Elsevier Applied Science, London 1992, s. 893-898.
  • [30] Tanaka S.-L, Takahashi Y.: Effect of Beam Collimation on the measurement of residual stress distribution in a Si3N4/steel joints. ISIJ Int., 1990, vol. 30, No 12, s. 1086-1091.
  • [31] Bing K., Eigenmann B., Scholtes B., Macherauch E.: Residual stress development due to brazing of metallic components. Residual Stresses. Ed. by V. Hauk, DGM Informationsgesellschaft Verlag, Oberursel, 1993, s. 247-256.
  • [32] Willemse P.F., Mulder F.M., Wei W., Rekveldt M.Th., Knight K.S.: Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite. Scripta Mater., 2000, 42, s. 775-779.
  • [33] Kohle R., Hui C.Y., Ustundag E., Sass S.L.: Residual thermal stresses and calculation of the critical metal particle size for interfacial crack extension in metal-matrix composites. Acta Mater., 1996, vol. 44, No 1, s. 279-287.
  • [34] Hiratsuka K., Takago S., Sasaki T., Hirose Y.: Residual stress in composite film (Ni-Co-P/Si3N4). Thin Solid Films, 2001, 398-399, s. 476-479.
  • [35] Shao S., Fan Z., Shao J., He H.: Evolutions of residual stress and microstructure in ZrO2 thin films deposited at different temperatures and rates. Thin Solid Films, 2003, 445, s. 59-62.
  • [36] Hanabusa T., Kusaka K., Sakata O.: Residual stress and thermal stress observation in thin copper films. Thin Solid Films, 2004, 459, s. 245-248.
  • [37] Matejicek J., Sampath S., Dubsky J.: X-ray residual stress measurement in metallic and ceramic plasma sprayed coatings. J. of Spray Technology, 1998, vol 7(4), s. 489-496.
  • [38] Sue J.A., Schajer G.S.: Stress determination for coatings. ASM Handbook. Vol. 5. Surface Engineering. ASM Int., Materials Park, USA, 1994, s. 645-653.
  • [39] Noyan I.C., Huang T.C., York B.R.: Residual Stress/Strain Analysis in Thin Films by X-ray Diffraction. Critical Reviews in Solid State and Materials Science, 2005, 20, s. 125-177.
  • [40] Tanaka K., Anikiwa Y.: Diffraction measurements of residual macrostress and microstress using X-rays, synchrotron and neutrons. JSME Int. J., Series A, 2004, vol. 47, No 3, s. 252-263.
  • [41] Withers P.J., Preuss M., Webster P.J.: Residual strain measurement by synchrotron diffraction. Material Science Forum, vols. 404-407, 2002, s. 1-12.
  • [42] Scardi P., Leoni M., Veneri S.: Residual stress analysis of ceramic coatings by means of synchrotron radiation XRD. Proc. Advances in X-ray Analysis, vol. 40, JCPDS-International Centre for Diffraction Data, Denver 1997.
  • [43] Eingenmann B., Macherauch E.: Determination of Grinding Residual Stress States in Surface Layers of Engineering Ceramics Using Synchrotron X-Rays. Zeitschrift fur Metallkunde, 1995, 86/2, s. 84-90.
  • [44] Tang F., Gnaupel-Herold T., Prask H., Anderson I.E.: Residual stresses and stress partitioning measurements by neutron diffraction in Al/Al-Cu-Fe composites. Materials Science and Engineering, 2005, A 399, s. 99-106.
  • [45] Carrad A., Fiori F., Girardin E., Pirling T., Powell P., Rustichelli F.: Neutron diffraction measurements of residual stresses in metal matrix composite samples. Radiation Physics and Chemistry, 2001, vol. 61, s. 575-577.
  • [46] Aydiner C.C. et. al.: Residual stresses in a bulk metallic glass-stainless steel composite. Materials Science and Engineering, 2005, A399, s. 107-113.
  • [47] Matejicek J.J., Sampath S., Brand P.C., Prask H.J.: Quenching, thermal and residual stress in plasma sprayed deposits: NiCrAlY and YSZ coatings. Acta Mater. 1999, vol. 47, No 2,
  • [48] Deputat J.: Nieniszczące metody badania naprężeń własnych. Badania Nieniszczące, 1998, nr 6/7, s. 30-36.
  • [49] Stewart D.M., Stevens K.J., Kaiser A.B.: Magnetic Barkhausen noise analysis of stress in steel. Current Applied Physics, 2004, 4, s. 308-311.
  • [50] Jiles D.C.: Theory of the magnetomechanical effect. J. Phys. D: Appl. Phys., 1995, 28, s. 1537-1546.
  • [51] Wilson J.W., Tian G.Y., Barrans S.: Residual magnetic field sensing for stress measurement. Sensors and Actuators, 2007, A135, s. 381-387.
  • [52] Cullity B.D.: Introduction to Magnetic Materials. Addison-Wesley, Reading, MA, 1972.
  • [53] Pilecki S., Ranachowski J., Święcicki Z.: Emisja akustyczna w badaniach ceramiki. W: Elektroceramika. Własności i nowoczesne metody badań, T. 2, Ranachowski J. (red.), PWN, Warszawa 1982, s. 49-59.
  • [54] Evans A.G.: Residual stress measurement using acoustic emission. J. Am. Cer. Soc., 1975, vol. 58, No 5-6, s. 239-243.
  • [55] Sathish S., Moran T.J., Martin R.W., Reibel R.: Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements. Materials Science and Engineering, 2005, A399, s. 84-91.
  • [56] Wali Y., Njeha A., Wiederb T., Ben Ghozlen M.H.: The effect of depth-dependent residual stresses on the propagation of surface acoustic waves in thin Ag films on Si. NDT&E Int., 2007, 40, s. 545-551.
  • [57] Drescher-Krasicka E., Ostertag C.P.: Residual stress measurements in welded steel beam column connections by scanning acoustic microscopy. J. of Mat. Sci., 1999, 34, s. 4173-4179.
  • [58] Schajer G.S., Roy G., Flamen M.T., Lu J.: Handbook of measurement of residual stresses. Ed. J. Lu, Society for Experimental Mechanics, Lilburn, GA, 1996.
  • [59] Deputat J.: Ultrasonic measurement of residual stresses under industrial conditions. Acustica, 1993, vol. 79, No 2, s. 161-169.
  • [60] Clark A.V., Hehman C.S., Nguyen T.N.: Ultrasonic Measurement of Stress Using a Rotating EMAT. Res. Nondestr. EvaL, 2000, s. 217-239.
  • [61] Milling Guide for Residual Stress Measurements. Vishay Micro-Measurements. Document Number: 11304.
  • [62] Withers P.J., Bhadeshia H.K.D.H.: Residual stress part 1 - measurement techniques. Materials Science and Technology, 2001, 17, 355, s. 355-365.
  • [63] Grant P.V., Lord J.D., Whitehead P.S.: The measurement of residual stresses by the incremental hole drilling technique. NPL Good Practice Guide No 53, August 2002.
  • [64] Santana Y.Y. et al.: Measurement of residual stress in thermal spray coatings by the incremental hole drilling method. Surface & Coatings Technology, 2006, 201, s. 2092-2098.
  • [65] Wenzelburger M., López D., Gadow R.: Methods and application of residual stress analysis on thermally sprayed coatings and layer composites. Surface & Coatings Technology, 2006, 201 s. 1995-2001.
  • [66] Li Y.: Application of interferometric strain rosette to residual stress measurements. Optics and Lasers in Engineering, 1997, vol. 27, s. 125-136.
  • [67] Nie M., Huang Q.A., Li W.: Measurement of residual stress in multilayered thin films by a full-field optical method. Sensors and Actuators, 2006, A126 s. 93-97.
  • [68] Kesler O. et al.: Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings. Materials Science and Engineering, 1998, A257 s. 215-224.
  • [69] Berger S.: Elastic and plastic strains in Al:TiW:Si contacts during thermal cycles. Materials Science and Engineering, 2000, A288, s. 164-167.
  • [70] Mezin A.: Coating internal stress measurement through the curvature method: A geometry-based criterion delimiting the relevance of Stoney's formula. Surface & Coatings Technology, 2006, 200, s. 5259-5267.
  • [71] de Wolf L, Maes H.E.: Mechanical stress measurements using micro-Raman spectroscopy. Microsystem Technologies, 1998, 5 s. 13-17.
  • [72] Wua X., Yuc J., Rena T., Liu L.: Micro-Raman spectroscopy measurement of stress in silicon. Microelectronics J., 2007, 38, s. 87-90.
  • [73] Schadler L.S., Galiotis C.: Fundamentals and application of Micro-Raman Spectoscopy to strain measurements in fibre-reinforced composites. Int. Mater. Reviews, 1995, vol. 40, s. 116-134.
  • [74] Taylor C.A., Wayne M.F., Chiu W.K.S.: Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation. Thin Solid Films, 2003, 429, s. 190-200.
  • [75] de Portu G., Micele L., Sekiguchi Y., Pezzotti G.: Measurement of residual stress distributions in Al2O3/3Y-TZP multilayered composites by fluorescence and Raman microprobe piezo-spectroscopy. Acta Materialia, 2005, 53, s. 1511-1520.
  • [76] Wang X., Xiao P.: Characterisation of ceramic coatings sintering using residual stress measurements. Journal of the European Ceramic Society, 2004, 24, s. 283-288.
  • [77] Waligóra W.: Wartości naprężeń własnych w próbkach ze stali ŁLH15SG wyznaczone w różnych ośrodkach badawczych. Mat. Seminarium ,,Metodyczne problemy pomiarów naprężeń własnych", Poznań, 1-2.12.1994, s. 26-38.
  • [78] Kandil F.A., Lord J.D., Fry A.T., Grant P.V.: A review of residual stress measurement methods - a guide to technique selection. NPL Report MATC(A) O4 Materials Centre, National Physical Laboratory UK, 2001.
  • [79] Dronavalli S.B.: Residual stress measurements and analysis by destructive and nondestructive techniques. M.Sc. Thesis, Graduate College University of Nevada, Las Vegas 2004.
  • [80] Roy A.K. et al.: Residual stress characterization in structural materials by destructive and nondestructive techniques. Journal of Materials Engineering and Performance, 2005, vol. 14(2), s. 203-211.
  • [81] Chena X., Yan J., Karlsson A.M.: On the determination of residual stress and mechanical properties by indentation. Materials Science and Engineering, 2006, A416, s. 139-149.
  • [82] Prime M.B., Hill M.R.: Measurement of Fiber-Scale Residual Stress Variation in a Metal Matrix Composite. Journal of Composite Materials, 2004, 38, s. 2079-2095.
  • [83] Doyle J.F.: Modern experimental stress analysis. Completing the solution of partially specified problems. John Wiley & Sons, Chichester, UK, 2004.
  • [84] Szargut J.: Modelowanie numeryczne pól temperatury. WNT, Warszawa 1992.
  • [85] Kącki E.: Równania różniczkowe cząstkowe w zagadnieniach fizyki i techniki. WNT, Warszawa 1989.
  • [86] Ramakrishan N., Arunachalam V.S.: Finite element methods for materials modeling. Progress in Materials Science, 1997, vol. 42, s. 253-261.
  • [87] Brebbia C.A., Telles J.C.F., Wrobel L.C.: Boundary element techniques: Theory and applications in engineering. Springer-Verlag, New York 1984.
  • [88] Cook R.D: Finite element modeling for stress analysis. John Wiley & Sons, New York 1995.
  • [89] Van Vinckenroy G., de Wilde W.P.: The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behaviour of composite materials structural components. Composite Structures, 1995, 32, s. 247-253.
  • [90] Mori K., Matsubara H., Noguchi N.: Micro-macro simulation of sintering process by coupling Monte Carlo and finite element methods. Int. J. of Mechanical Sciences, 2004, 46, s. 841-854.
  • [91] Liu G.R., Quek S.S.: The finite element method. A practical course. Butterworth-Heinemann Elsevier Science, Oxford 2003.
  • [92] Bathe K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey 1982.
  • [93] Golański D.: Wykorzystanie termografii w badaniach próżniowego lutowania metalu z ceramika,. Mat. I Ogólnopolskiej Konf. Termografii i Termometrii w Podczerwieni, Szczyrk 1992.
  • [94] Gawęcki A.: Mechanika materiałów i konstrukcji prętowych. Wyd. Politechniki Poznańskiej, Poznań 2003.
  • [95] Stephens J.J., Burchett S.N., Hosking P.M.: High temperature creep properties of eutectic and near-eutectic silver-copper alloys: application to metal/ceramic joining. Proc. of conf. ,,The Metal Science of Joining", Cincinnati, Ohio 1991.
  • [96] Davis J.R. et al. (ed.): Metals handbook. 9th ed. ASM Int., Metals Park, OH, 1989.
  • [97] Charakterystyki stali. Praca zb. Seria D, Wyd. ,,Śląsk", Katowice 1984.
  • [98] LUSAS User Guide Manual v.13, FEA Ltd.
  • [99] Ravichandran K.S.: Thermal residual stresses in functionally graded material system. Materials Science and Engineering, 1995, A201, s. 269-276.
  • [100] Suganuma K., Okamoto T., Kamachi T.: Influence of shape and size on residual stress in ceramic-metal joining. J. of Material Science, 1987, No 22, s. 3561-3565.
  • [101] Włosiński W.: Spajanie ceramiki z metalami. PWN, Warszawa 1989.
  • [102] Ferenc K., Tomaszewski.: Distribution of thermal residual stresses in various types of metal-to-ceramic joints as analysed by FEM. Proc. of conf. Joining ceramics, glass and metal, Ed. W. Kraft, DGM Informationsgessellschaft Verlag, Oberursel, 1989, s. 317-324.
  • [103] Ferenc K., Golański D., Kawka M.: Numerical and Experimental Analysis of Thermal Stresses in the Cylindric Brazed Joints. Zawarivanje, 1992, vol. 35, No 5-6, s. 209-214.
  • [104] Gao M., Bao F.: Brazing of silicon nitride and steel with Cu-based Filler metals: mechanism and residual stress in its joints. Materials Science Forum, 1995, vol. 189-190 s. 399-404.
  • [105] Włosiński W.: The joining of advanced materials. Oficyna Wyd. Politechniki Warszawskiej, Warszawa 1999.
  • [106] Murakawa H., Ueda Y.: Shape optimization of ceramic/metal joints based on reliability. Transactions of JWRI, 1990, vol. 19, No 2, s. 71-79.
  • [107] Rasmussen J.: Shape Optimization and CAD. Int. J. of Systems Automation, Research and Applications (SARA), 1991, vol. 1, s. 33-35.
  • [108] Akselsen O.M.: Review. Advances in brazing of ceramics. J. of Materials Science, 1992, vol. 27, s. 1989-2000.
  • [109] Włosiński W., Golański D.: Wybrane zagadnienia wytrzymałości spajanych połączeń ceramiczno-metalowych. Posiedzenie Sekcji Podstaw Technologii PAN, Prace Nauk. Wydziału Inżynierii Produkcji PW, red. L. Dąbrowski, Warszawa 2001, z. 68, s. 45-61.
  • [110] Seo K., Kusaka M., Nogato F.: Study on thermal stresses at ceramic-metal joints. JSME Int. J., series 1, 1990, vol. 33, No 3, s. 153-159.
  • [111] Golański D.: Modelowanie w technologii spajania. Oficyna Wyd. Politechniki Warszawskiej, Warszawa 1997.
  • [112] Li C.H.: Dynamic mismatch between bonded dissimilar materials. JOM, 1993, vol. 45, No 6, s. 43-46.
  • [113] Pampuch R.: Współczesne materiały ceramiczne. Wyd. AGH, Kraków 2005.
  • [114] Goldsmith A., Waterman T.E., Hirchorn H.J.: Handbook of thermophysical properties of solid materials. New York 1961.
  • [115] Włosiński W., Golański D.: The key issues affecting the strength of bonded ceramic-to--metal joints. Advances in Manufacturing Science and Technology, Polish Academy of Sciences, 2001, vol. 25, No 4, s. 21-37.
  • [116] Kim Y.C., Yamamoto T., North T.H.: Generation and reduction of residual stress in ceramic/metal joint. Transaction of JWRI, 1992, vol. 21, No 2, s. 145-151.
  • [117] Golański D., Włosiński W., Kujawińska M., Sałbut L.: Determination of Displacement and Strain Fields in Al2O3-FeNi42 Joints by FEM and Automated Grating Interferometry. Bulletin of The Polish Academy of Sciences. Technical Sciences, 2003, vol. 51, No 4, s. 347-365.
  • [118] Williamson R.L, Rabin B.H, Byerly G.E.: Fern study the effects of interlayers and creep in reducing residual stresses and strains in ceramic-metal joints. Composites Engineering, 1995, vol. 5, No 7, s. 851-863.
  • [119] Xian A-P., Si Z-Y.: Interlayer design for joining pressureless sintered SiAlON ceramic and 40Cr steel brazing with Ag57Cu38Ti5 filler metal. J. of Material Science, 1992, vol. 27, s. 1560-1566.
  • [120] Lee C.S.: Novel joining of dissimilar ceramics in the Si3N4-Al2O3 system using polytypoid functional gradients. Ph.D. Thesis, University of California, Berkeley 2001.
  • [121] Zuiker J.R.: Functionally graded materials: choice of micromechanics model and limitations in property variation. Composites Engineering, 1995, vol. 5, No 7, s. 807-819.
  • [122] Delfose D., Cherradi N., Ilschner B.: Numerical and experimental determination of residual stresses in graded materials. Composite Part B, 1997, 28B, s. 127-141.
  • [123] Ravichandran K.S.: Thermal residual stresses in functionally graded material system. Materials Science and Engineering, 1995, A201 s. 269-276.
  • [124] Xu Q., Yu S., Kang Y.: Residual stress analysis in functionally graded materials. Mechanics Research communications, 1999, vol. 26, No 1, s. 55-60.
  • [125] Arsenault R.J., Taya M.: Metal Matrix Composites - Thermomechanical Behavior. Pergamon Press, Oxford 1989.
  • [126] Chawla K.K.: Composite Materials: Science and Engineering. Springer-Verlag, New York 1987.
  • [127] Halpin J.C, Tsai S.W.: Effects of Environmental Factors on Composite Materials. Air Force Technical Report AFML-TR-67-423, June 1969.
  • [128] Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc., 1957, vol. 241, s. 376-396.
  • [129] Whitney J.M., McCullough R.L.: Micromechanical Materials Modeling. Vol. 2, Delware Composites Desing Encyclpoedia. Technomic Publishing Co. Inc., Lancasterer 1990.
  • [130] Golański D., Kaźmierczak M., Mikoś M., Jakubowski J., Klimczewski W., Wierzchoń T.: Kompozytowe warstwy powierzchniowe wytwarzane metodą natryskiwania plazmowego i przetapiania mikroplazmowego. Pr. Nauk. PW, Inżynieria Materiałowa, z. 8, 1998, s. 74-86.
  • [131] Guoqiang L., Yi Z., Su-Seng P.: Analytical modeling of particle size and cluster effects on particulate-filled composite. Materials Science and Engineering, 1999, A271, s. 43-52.
  • [132] Borbe'ly A., Biermann H., Hartmann O.: FE investigation of the effect of particle distribution on the uniaxial stress-strain behaviour of particulate reinforced metal-matrix composites. Materials Science and Engineering, 2001, A313 s. 34-45.
  • [133] Sudarshan R., Klod K.: Influence of particle shape and aspect ratio on thermally activated viscoplastic (time-dependent) response of ceramic (zirconia)-metal (NiCoCrAlY) particulate composites. Materials Science and Engineering, 2004, A366 s. 356-366.
  • [134] Shuyi Q., Changrong C., Guoding Z., Wenlong W., Zhongguang W.: The effect of particle shape on ductility of SiCp reinforced 6061A1 matrix composites. Materials Science and Engineering, 1999, A272, s. 363-370.
  • [135] Gall K., Horstemeyer M., McDowell D.L., Fan J.: Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al-Si alloys. Mechanics of Materials, 2000, 32, s. 277-301.
  • [136] Golański D., Kozłowski M.: Zastosowanie MES do symulacji naprężeń w kompozytach o osnowie metalicznej wzmacnianych twardymi cząstkami ceramicznymi. Mat. Sympozjum Katedr i Zakładów Spawalnictwa ,,Techniki Komputerowe w Spawalnictwie". Gliwice 1995.
  • [137] Wang Z., Chen T-K., Lloyd D.J.: Stress distribution in particulate-reinforced metal-matrix composites subjected to external load. Metall. Trans. A, 1993, 24A, s. 197-207.
  • [138] Cannillo V., Leonelli C., Boccaccini A.R.: Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites. Materials Science and Engineering, 2002, A323 s. 246-250.
  • [139] Hsueh C.H., Becher P.P.: Residual thermal stresses in ceramic composites, Part I: with ellipsoidal inclusions. Mater. Sci. Eng., 1996, A212[l], s. 22-28.
  • [140] Strzęciwilk D., Wokulski Z., Tkacz P., Golański D.: Microstructural studies and analysis of residual stresses in Co-TiC composites obtained by the spontaneous crystallization method. Philosophical Magazine, 2004, vol. 84, No 20, s. 2041-2054.
  • [141] Golański D.: Modelowanie naprężeń własnych w rzeczywistych strukturach kompozytów MMC. Pr. Nauk. PW, Mechanika, z. 215, 2006, s. 71-85.
  • [142] Sanchez-Palencia E.: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127, Springer-Verlag, Berlin 1980.
  • [143] Golański D., Terada K., Kikuchi N.: Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Computational Mechanics, 1997, vol. 19, No 3, s. 188-203.
  • [144] Guedes J.M., Kikuchi, N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comp. Meth. in Appl. Mech. and Engin., 1990, No 83, s. 143-198.
  • [145] Golański D., Grześ J., Kikuchi N., Kozłowski M.: Modeling of residual stresses in metal matrix composites using digital image based technique and homogenization method. Proc. Int. Conf. on Mathematical Modeling and Simulation of Metal Technologies, Ariel (Israel), November 13-15, 2000, s. 23-32.
  • [146] Golański D.: Modelowanie naprężeń termicznych w kompozytowych warstwach powierzchniowych metoda, homogenizacji z wykorzystaniem techniki cyfrowej obróbki obrazu. Mat. konf. ,,Techniki Komputerowe w Spawalnictwie", Gliwice 2001.
  • [147] Houdeau D., Steckenborn A., Zhang J-M., Kiesewetter L.: Eigenspannungen in Mikrosystemen. Proc. of conf. ,,Residual Stresses", DGM Informationsgesellschaft Verlag, Oberursel 1992, s. 23.
  • [148] Wenzelburger M., Escribano M., Gadow R.: Modeling of thermally sprayed coatings on light metal substrates — layer growth and residual stress formation. Surface and Coatings Technology, 2004, vol. 180-181, s. 429-435.
  • [149] Widjaja S., Limarga A.M., Yip T.H.: Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating. Thin Solid Films, 2003, 434, s. 216-227.
  • [150] Zhang X.C., Xu B.S., Wang H.D., Wu Y.X.: Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method, Materials and Design, 2006, 27, s. 308-315.
  • [151] Polata A., Sarikayaa O., Celikb E.: Effects of porosity on thermal loadings of functionally graded Y2O3-ZrO2/NiCoCrAlY coatings. Materials and Design, 2002, 23, s. 641-644.
  • [152] Golanski D., Marczuk A., Wierzchon T.: Numerical modelling of residual stresses in borided layers on steel substrate. J. of Mat. Sci. Lett., 1995, 14, s. 1499-1501.
  • [153] Golanski D., Bielinski P., Wierzchon T.: Numerical modelling of residual stresses in boride layers on steel. Surface Engineering, 1997, vol. 13, No 2, s. 145-148.
  • [154] Golański D.: Analiza numeryczna naprężeń własnych w powłokach niklowych nakładanych metodą tamponową. Mat. Sympozjum Katedr i Zakładów Spawalnictwa ,,Techniki komputerowe w spawalnictwie", Gliwice 1994.
  • [155] Golański D.: Analiza obliczeniowo-doświadczalna rozkładu naprężeń własnych w spajanych połączeniach ceramiczno-metalowych. Praca magisterska, Politechnika Warszawska, Warszawa 1988.
  • [156] Olesińska W., Kaliński D., Golański D.: Modelowanie numeryczne naprężeń własnych w wielosegmentowej konstrukcji ceramiczno-metalowej. Inżynieria Materiałowa, 2003, vol. 2, s. 66-73.
  • [157] Golański D.: Metody hybrydowe w badaniach ceramiczno-metalowych. Mat. 42 Krajowej Nauk.-Techn. Konf. Spawalniczej „Techniki Komputerowe w Spawalnictwie”, Warszawa, 3-5 październik 2000.
  • [158] Handbook on experimental mechanics. Ed. By Kobayashi, Prentice Hall, Englewood Cliffs, New Jersey 1987.
  • [159] Sałbut L., Kujawińska M., Bułhak J., Golański D., Krajewski A.: Ceramic-to-metal joint testing by automated grating interferometry. In: Experimental Mechanics, Advances in Design, Testing and Analysis. Ed. by I.M. Allison, Balkema, Rotterdam 1998, s. 633-638.
  • [160] Sałbut L., Kujawińska M., Jóźwik M., Golański D.: Investigation of ceramic-to-metal joint properties by hybrid moiré interferometry/FEM analysis. Proc. SPIE Int. Conf. on Optical Metrology - Interferometry'99, Pultusk Castle, Poland, September 20-23, 1999, vol. 3745 (1999), s. 298-306.
  • [161] Golański D.: Modelowanie naprężeń własnych w kompozytach MMC z wykorzystaniem metody homogenizacji i techniki cyfrowej obróbki obrazu. Kompozyty, 2002, nr 5 s. 354-358.
  • [162] Golański D., Grześ J.: The numerical analysis of residual stresses in surface layers deposited by brush plating method. J. of Engineering Manufacture, 2006, vol. 220, No 3, s. 429-437.
  • [163] Totemeier T.C., Wright R.N., Swank W.D.: FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying. Idaho National Engineering and Environmental Laboratory. Report 2004.
  • [164] Trinh D., Müller M.: Aluminides. 4H1609 Functional Materials, Project Report, KTH, 2002.
  • [165] Golański D.: The effect of the interface profile on the residual stresses generated in thermally sprayed metallic coatings on ceramic substrates. Proc. of IV Int. Conf. on Advances in Production Engineering, Warsaw 2007.
  • [166] Jakubowska M., Golański D., Kaliński D., Hotra Z.: Thermal residual stresses in thick film structures resistor on dielectric — FEM analysis. J. of Lviv Polytechnic University, 2002, vol. 458, s. 32-37.
  • [167] Maląg A., Kaliński D., Gawlik G., Golański D.: Strain in high power laser diode design: Elastooptic waveguide formation by implantation-induced strain. VIII Konf. Nauk. ,,Technologia Elektronowa" ELTE 2004, Stare Jabłonki k/Ostródy 2004.
  • [168] Buda M. et al.: Stress-induced effects by the anode oxide in ridge. Waveguide laser diodes. IEEE J. Quantum Electron., 2000, 36, 10, s. 1174-1183.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0002-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.