PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence of positive solutions to BVPs of higher order delay differential equations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the existence of positive solutions for the nonlinear eigenvalue problem with singularity and the superlinear semipositone problem of higher order delay differential equations. The main results are obtained by using Guo-Krasnoselskii's fixed point tbearem In cones. These results extend some of the existing literature.
Wydawca
Rocznik
Strony
53--64
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
  • Department of Mathematics Hunan Normal University Changsha, Hunan 410081, P.R. China
Bibliografia
  • [1] R. P. Agarwal, D. O’Regan, Existence theory for single and multiple solutions to singular position boundary value problems, J. Differential Equations 175 (2001), 393-414.
  • [2] R. P. Agarwal, D. O’Regan, P. J. Y. Wang, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • [3] L. H. Erbe, Q. K. Kong, Boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 53 (1994), 377-388.
  • [4] Z. L. Liu, F. Y. Li, Multiple positive solutions of nonlinear two-point boundary value problem, J. Math. Anal. Appl. 203 (1996), 610-625.
  • [5] D. Q. Jiang, J. Y. Wang, On boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 116 (2000), 231-241.
  • [6] P. X. Weng, Boundary value problems for second order mixed type functional differential equations, Appl. Math. JCU. 12B (1997), 155-164.
  • [7] D. Q. Jiang, P. X. Weng, Existence of positive solutions for boundary value problems of second-order functional differential equations, EJQTDE (American) 6 (1998), H4.
  • [8] P. X. Weng, D. Q. Jiang, Existence of positive solutions for boundary value problem of second-order FDE, Comput. Math. Appl. 37 (10) (1999), 1-9.
  • [9] K. S. Ha, Y. Lee, Existence of multiple positive solutions of singular boundary value problem, Nonlinear Anal. 28 (8) (1997), 1429-1468.
  • [10] A. M. Fink, J. A. Gatica, G. E. Hernandez, Eigenvalues of generalized gelfand models, Nonlinear Anal. 20 (12) (1993), 1453-1468.
  • [11] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, NewYork, 1998.
  • [12] A. Anuradha, D. D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP’s, Proc. Amer. Math. Soc. 124 (3) (1996), 757-763.
  • [13] D. D. Hai, K. Schmitt, R. Shivaji, Positive solutions of quasilinear boundary value problems, J. Math. Anal. Appl. 217 (1998), 672-686.
  • [14] C. Maya, R. Shivaji, Multiple positive solutions for a class of semilinear elliptic boundary value problems, Nonlinear Anal. 38 (1999), 497-504.
  • [15] V. Anuradha, C. Maya, R. Shivaji, Positive solutions for a class of nonlinear boundary value problems with Neumann-Robin boundary conditions, J. Math. Anal. Appl. 236 (1999), 94-124.
  • [16] A. Castro, S. Gadam, R. Shivaji, Evolution of solution curves in semipositione problems with concave nonlinearities, J. Math. Anal. Appl. 245 (2000), 282-293.
  • [17] D. D. Hai, R. Shivaji, An existence result on positive solutions for a class of P-Laplacian systems, Nonlinear Anal. 56 (2004), 1007-1010.
  • [18] J. R. Graef, Bo Yang, Positive solutions to a multi-point higher order boundary value problem, J. Math. Anal. Appl. 316 (2006), 409-421.
  • [19] Dingyong Bai, Yuantong Xu, Existence of positive solutions for boundary-value problems of second-order delay differential equations, Appl. Math. Lett. 18 (2005), 621-630.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0051-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.