Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The depth of a term may be used as a measurement of complexity of identities. For any natural number [...] have depth at least k. For any variety V, the k-normalization of V is the variety Nk(V) defined by all k-normal identities of V. We describe a process to produce from a basis for V a basis for Nk(V), for any variety V which has an idempotent term; when the type of V is finite and V is finitely based, this results in a finite basis for Nk(V) as well. This process encompasses several known examples, for varieties of bands and lattices, and allows us to give a new basis for the normalization of the variety PL of pseudo-complemented lattices.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
733--742
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada, ppenner@umanitoba.ca
Bibliografia
- [1] R. Balbes and A. Horn, Stone lattices, Duke Math. J. 37 (1970), 537-545.
- [2] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327-335.
- [3] I. Chajda, V. Cheng and S. L. Wismath, 2-Normalization of lattices, to appear in Czechoslovak Math. J.
- [4] I. Chajda, K. Denecke and S. L. Wismath, A characterization of P-compatible varieties, Algebra Colloq. Vol. 14, no. 2 (2007), 191-206.
- [5] I. Chajda and S. L. Wismath, Externalization of lattices, Demonstratio Math. 29 (2006), no. 4, 731-736.
- [6] V. Cheng and S. L. Wismath, Bases for the k-normalizations of varieties of bands, Demonstratio Math. 40, no. 4 (2007), 775-787.
- [7] W. Chromik, Externally compatible identities of algebras, Demonstratio Math. 23 (1990), no. 2, 345-355.
- [8] K. Denecke and S. L. Wismath, Valuations of terms, Algebra Universalis 50 (2003), 107-128.
- [9] K. Denecke and S. L. Wismath, A characterization of k-normal varieties, Algebra Universalis 51 (2004) no. 4, 395-409.
- [10] E. Graczyńska, On normal and regular identities and hyperidentities, in: Universal and Applied Algebra, Proceedings of the V Universal Algebra Symposium, Turawa (Poland), 1988, World Scientific, 1989, 107-135.
- [11] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 no. 3 (1990), 387-397.
- [12] I. I. Mel’nik, Nilpotent shifts of varieties, (in Russian), Mat. Zametki, Vol. 14 No. 5 (1973), English translation in: Math. Notes 14 (1973), 962-966.
- [13] R. Padmanabhan, Regular identities in lattices, Trans. Amer. Math. Soc. 158 no.1 (1971), 179-188.
- [14] P. Penner, Regular identities of pseudo-complemented lattices, Algebra Colloq. 7:4 (2000), 391-400.
- [15] J. Płonka, On equational classes of abstract algebras defined by regular equations,Fund. Math. 64 (1969), 241-247.
- [16] J. Płonka, On varieties of algebras defined by identities of some special forms, Houston J. of Math., 14 (1988), 253-263.
- [17] M. V. Volkov, On the join of varieties, Simon Stevin 58 (1984), 311-317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0050-0001