Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let: {Xi} be a sequence of r.v.'s, and: Mn := max (X1,..., Xn), mn := min (X1,..., Xn). Our goal is to prove the almost sure central limit theorem for the properly normalized vector {Mn,mn}, provided: 1) {Xi} is an i.i.d. sequence, 2) {Xi} is a certain standardized stationary Gaussian sequence.
Wydawca
Czasopismo
Rocznik
Tom
Strony
705--722
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Faculty of Applied Informatics and Mathematics, Department of Econometrics and Statistics, Warsaw University of Life Sciences, marcin_dzudzinski@sggw.pl
Bibliografia
- [1] I. Berkes and H. Dehling, Some limit theorems in log density, Ann. Probab. 21 (1993), 1640-1670.
- [2] I. Berkes and E. Csaki, A universal result in almost sure central limit theory, Stoch. Process. Appl. 94 (2001), 105-134.
- [3] G. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), 561-574.
- [4] S. Cheng, L. Peng and Y. Qi, Almost sure convergence in extreme value theory, Math. Nachr. 190 (1998), 43-50.
- [5] H. Cramer and M. R. Leadbetter, Stationary and Related Stochastic Processes, New York: Wiley (1967).
- [6] E. Csaki and K. Gonchigdanzan, Almost sure limit theorem for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002), 195-203.
- [7] M. Dudziński, An almost sure maximum limit theorem for certain class of dependent stationary Gaussian sequences, Demonstratio Math. 35 (2002), 879-890.
- [8] M. Dudziński, A note on the almost sure central limit theorem for some dependent random variables, Statist. Probab. Lett. 61 (2003), 31-40.
- [9] M. Dudziński, An almost sure central limit theorem for the maxima and sums of stationary Gaussian sequences, Probab. Math. Statist. 23 (2003), 139-152.
- [10] M. Dudziński, On the almost sure central limit theorems for the vectors of several large maxima and for some random permanents, Demonstratio Math. 34 (2006), 949-963.
- [11] I. Fahrner and U. Stadtmueller, On almost sure max-limit theorems, Statist. Probab. Lett. 37 (1998), 229-236.
- [12] A. Fisher, A pathwise central limit theorem for random walks, preprint (1989).
- [13] M. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), 201-205.
- [14] M. R. Leadbetter, G. Lindgrenand H. Rootzen, Extrernes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, Heidelberg, Berlin (1983).
- [15] P. Matula, Convergence of weighted averages of associated random variables, Probab. Math. Statist. 16 (1996), 337-343.
- [16] P. Matula, On the almost sure central limit theorem for associated random variables, Probab. Math. Statist. 18 (1998), 411-416.
- [17] J. Mielniczuk, Some remarks on the almost sure central limit theorem for dependent sequences, in: Limit theorems in Probability and Statistics 2, Janos Bolyai Math. Soc. (2002), Budapest, 391-403.
- [18] M. Peligrad and Q. Shao, A note on the almost sure central limit theorem for some weakly dependent random variables, Statist. Probab. Lett. 22 (1995), 131-136.
- [19] P. Schalle, On strong versions of the central limit theorem, Math. Nachr. 137 (1988), 249-256.
- [20] U. Stadtmueller, Almost sure versions of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), 413-426.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0049-0021