PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Strong maximum principles for infinite systems of parabolic differential-functional inequalities with nonstandard initial inequalities with integrals

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider infinite systems of parabolic differential-functional inequalities with nonstandard initial inequalities with integrals. For that systems we give strong maximum principles in relatively arbitrary (n+1)-dimensional time-space sets more general than the cylindrical domain.
Wydawca
Rocznik
Strony
571--581
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Cracow University of Technology Independend Division of Descriptive Geometry and Engineering Graphics Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] L. Byszewski, Strong maximum principle for implicit non-linear parabolic functional-differential inequalities in arbitrary domains, Univ. Iagell. Acta Math. 24 (1984), 327-339.
  • [2] L. Byszewski, Strong maximum and minimum principles for parabolic functional-differential problems with non-local inequalities [uj(t0, x)−Kj] +Pihi(x)[uj(Ti, x)−Kj]≤(≥)0, Ann. Polon. Math. 52 (1990), 195-204.
  • [3] L. Byszewski, Strong maximum principles for parabolic nonlinear problems with nonlocal inequalities together with integrals, J. Appl. Math. Stochastic Anal. 3.5 (1990), 65-80.
  • [4] J. Brandys, Strong maximum principles for infinite systems of parabolic differential-functional inequalities with initial constant estimates, Ann. Soc. Math. Polon., Comm. Math. 47.2 (2007), 141-148.
  • [5] D. Jaruszewska-Walczak, Comparison theorems for infinite systems of parabolic functional-differential equations, Ann. Polon. Math. 77.3 (2001), 261-269.
  • [6] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Acad. Publ., Dordrecht 1999.
  • [7] Z. Kamont, Infinite systems of hyperbolic functional differential inequalities, Nonlinear Anal. 51 (2002), 1429-1445.
  • [8] J. Chabrowski, On non-local problems for parabolic equations, Nagoya Math. J. 93(1984), 109-131.
  • [9] J. Szarski, Strong maximum principle for non-linear parabolic differential-functional inequalities, Ann. Polon. Math. 29 (1974), 207-214.
  • [10] J. Szarski, Strong maximum principle for non-linear parabolic differential-functional inequalities in arbitrary domains, Ann. Polon. Math. 31 (1975), 197-203.
  • [11] J. Szarski, Infinite systems of parabolic differential-functional inequalities, Bull. Acad. Polon. Sci., Sér. Sci. Math. 28.9-10 (1980), 477-481.
  • [12] P. N. Vabishchevich, Non-local parabolic problems and the inverse heat-conduction problem (in Russian), Diff. Uravn. 17 (1981), 1193-1199.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0049-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.