Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
From a mathematical point of view the Japanese art of Origami is an art of finding isometric injections of subsets of R2 into R3. Objects obtained in this manner are developable surfaces and they are considered to be fully understood. Nevertheless, until now it was not known whether or not the local shape of the Origami model determines the maximum size and shape of the sheet of paper it can be madę of. In the present paper we show that it does. We construct a set [...] containing the point (O, 1/2) and an isometry [...]such that for every neighborhood [...] restricted to u cannot be extended to an isometry of the set [...] into R3. We also prove that all the singularities of an Origami model are of the same type - there can appear only cones.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
473--480
Opis fizyczny
Bibliogr. 3 poz., rys.
Twórcy
autor
autor
- Institute of Mathematics University of Warsaw, Banacha 2, 02-097 Warsaw, Poland, T.Maszczyk@mimuw.edu.pl
Bibliografia
- [1] M. Heller, W. Sasin, Structured spaces and their application to relativistic physics, J. Math. Phys. 36 (1995), 3644-3662.
- [2] M. A. Mostow, The differentiable space structures of Milnor classifying spaces, simplicial complex and geometric relations, J. Diff. Geometry 14 (1979), 256-293.
- [3] W. Sasin, On eqvivalence relations on differential spaces, CMUC 29, 3 (1998), 529-539.
- [4] P. Molino, Riemannian Foliations, Birkhauser, Boston, Basel 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0048-0021