Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a metrizable locally compact Abelian group with dual group G. [...] denotes the vector space of all complex-valued functions in L1 (G) whose Fourier transforms [...] belong to LP(G). Research on the spaces Ap(G) was initiated by Warner in [14] and Larsen, Liu and Wang in [7], Martin and Yap in [8]. Let Lip(alpha,p) and lip(alpha,p) denote the Lipschitz spaces defined on G. In the present paper, the space Alip/p(G) consisting of all complex-valued functions [...] whose Fourier transforms [...] belong to Lp(G) is investigated. In the first section invariant properties and asymptotic estimates for the translation and modulation operators are given. Furthermore it is showed that space App(G) is homogeneous Banach space. At the end of this work, it is proved that the space of all multipliers from L1 (G) to Alip/p(G) is the space Alip/p(G).
Wydawca
Czasopismo
Rocznik
Tom
Strony
425--432
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
- Ondokuz Mayis University Faculty of Art and Sciences Department of Mathematics Sinop, Turkey, ismaila@omu.edu.tr
Bibliografia
- [1] W. R. Bloom, A characterization of Lipschitz classes on 0-dimensional groups, Proc. Amer. Math. Soc. 53 (1953), 149-153.
- [2] R. S. Doran, J. Whichmann, Approximate Identity and Factorization in Banach Modules, Lecture Notes in Math. 768. Springer-Verlag, (1979).
- [3] H. G. Feichtinger, On a class of convolution algebras of functions, Ann. Enst. Fourier, Grenoble 27, 3 (1977), 135-162.
- [4] H. G. Feichtinger, Multipliers from Ll(G) to spaces of Lipschitz type, preprint.
- [5] H. G. Feichtinger, A. T. Gürkanli, On a family of weighted convolution algebras, Internat. J. Math. Sci. 13, No. 3, (1990).
- [6] R. Larsen, Banach Algebras, Marcel Dekker, INC, New York, (1973).
- [7] R. Larsen, T. S. Liu, J. K. Wang, On functions with Fourier transforms in Lp, Michigan Math. J., Vol. 11, (1964), 369-378.
- [8] J. C. Martin, L. Y. H. Yap, The algebra of functions with Fourier transforms in Lp, Proc. Amer. Math. Soc. 24 (1970), 217-219.
- [9] T. S. Quek, L. Y. H. Yap, Multipliers from Ll(G) to a Lipschitz Space, J. Math. Anal. App. 69, (1979), 531-539.
- [10] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, Oxford, 1968.
- [11] M. A. Rieffel, Induced Banach algebras and locally compact groups, J. Funct. Anal. (1967), 443-491.
- [12] W. Rudin, Real and Complex Analysis, Mc. Graw-Hill, New York, 1966.
- [13] B. Sağir, On functions with Fourier transforms in W(B,Y), Demonstratio Math. 33, No 2 (2000), 355-363.
- [14] C. R. Warner, Closed ideals in the group algebra Ll(G)∩L2(G), Trans. Amer. Math. Soc., Vol. 121, No. 2, (1966), 408-423.
- [15] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, London/New York, 1968.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0048-0017