PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Nemytskij operator of substitution in the C1 space of set-valued functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the Nemytskij operator, i. e., the operator of substitution, defined by (N[...]x) := G(x,<[...](x)), where G is a given multifunction. It is shown that N maps C1 (I, C), the space of all continuously differentiable functions on the interval I with values in a cone C in a Banach space, into C1 (I, cc(Z)), the space of all continuously differentiable set-functions on I with compact and convex values in a Banach space Z and N fulfils the Lipschitz condition if and only if the generator G is of the form G(x,y)=A(x,y) + B(x) where A(x, •) is continuous, linear function, A(.,y) and B are continuously differentiable and the function x— > A(x, •) is Lipschitzian.
Wydawca
Rocznik
Strony
403--414
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • Institute of Mathematics Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland, jakub.ludew@polsl.pl
Bibliografia
  • [1] J. Appel, P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge 1990.
  • [2] H. T. Banks, M. Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. Appl. 29, (1970), 246-272.
  • [3] A. Matkowska, J. Matkowski, N. Merentes, Remark on globally Lipschitzian composition operators, Demonstratio Math. 28 (1995), 171-175.
  • [4] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.
  • [5] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlinear Anal., Theory, Methods Appl. 30, Proc. 2nd World Congress of Nonlinear Analysis (1997), 719-726.
  • [6] K. Nikodem, K-convex and K-concave set-valued functions, Politechnika Łódzka, Zeszyty Nauk. Politech. Łódz., Mat. 559, Rozprawy Nauk. 114, 1989.
  • [7] H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
  • [8] A. Smajdor, On regular multivalued cosine families, Annal. Math. Silesianae, 13 (1999), 271-280.
  • [9] A. Smajdor, W. Smajdor, Jensen equation and Nemytskij operator for set-valued functions, Rad. Mat. 5 (1989), 311-320.
  • [10] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Rad. Mat. 6 (1990), 279-293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0048-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.