Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we prove the existence of multiple periodic and subharmonic solutions of the Hamiltonian system [..] when the Hamiltonian H is periodic in a part of the variables and locally coercive in the other part; that is, there exists a decomposition [...] for almost every t in some non empty open subset C of [O, T]. For the resolution, we use an analogy of Egorov's Theorem and a Generalized Saddle Point Theorem.
Wydawca
Czasopismo
Rocznik
Tom
Strony
233--248
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics Faculty of Sciences 5000 Monastir, Tunisia, m_timoumi@yahoo.com
Bibliografia
- [1] I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36.
- [2] A. Fonda and A. C. Lazer, Subharmonic solutions of conservative systems with non convex potential, Amer. Math. Soc. 115 (1990), 183-190.
- [3] G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, Dynamics Rep. 3 (1994), 1-24.
- [4] Z. Q. Ou and C. L. Tang, Periodic and subharmonic solutions for a class of superquadratic Hamiltonian systems, Nonlinear Analysis (2004), 245-258.
- [5] P. H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Com. Pure Appl. Math. 33 (1980), 609-633.
- [6] E. Alves de B. e Silva, Subharmomc solutions for subquadratic Hamiltonian systems, J. Diff. Equations 115 (1995), 120-145.
- [7] M. Timoumi, Subharmonics of a Hamiltonian system, Demonstratio Math. 37 (2004), 977-990.
- [8] M. Timoumi, Subharmonics of nonconvex Hamiltonian systems, Arch. Math. (1999), 422-429.
- [9] M. Willem, Subharmonic oscillations of convex Hamiltonian systems, Nonlinear Anal. 9 (1985), 1303-1311.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0047-0022