Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using the concept of w-distance, we prove fixed point theorems for multivalued contractive maps. Consequently, we improve and extend the corresponding fixed point results due to Feng and Liu, Nadler and many of others.
Wydawca
Czasopismo
Rocznik
Tom
Strony
145--150
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
- Department of Mathematics King Abdul Aziz University P.O. Box 80203 Jeddah 21589, Saudi Arabia, latifmath@yahoo.com
Bibliografia
- [1] J. S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 284 (2003), 690-697.
- [2] Y. Feng and S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi Type mappings, J. Math. Anal. Appl. 317 (2006), 103-112.
- [3] T. Husain and A. Latif, Fixed points of multivalued nonexpansive maps. Internat. J. Math. & Math. Sci. 14 (1991), 421-430.
- [4] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381-391.
- [5] T. H. Kim, K. Kim and J. S. Ume, Fixed point theorems on complete metric spaces, Panamer. Math. J. 7 (1997), 41-51.
- [6] A. Latif and I. Beg, Geometric fixed points for single and multivalued mappings, Demonstratio Math. 30 (1997), 791-800.
- [7] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
- [8] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
- [9] S. V. R. Naidu, Fixed points and coincidence points for multimaps with not necessarity bounded images, Fixed Point Theory and Appl. 3 (2004), 221-242.
- [10] S. Park, On generalizations of the Ekland-type variational principles, Nonlinear Anal. 39 (2000), 881-889.
- [11] T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal. 8 (1996), 371-382.
- [12] T. Suzuki, Several fixed point theorems m complete metric spaces, Yokohama Math J. 44 (1997), 61-72.
- [13] W. Takahashi, Existence theorems in metric spaces and characterizations of metric completeness, Josai Math. Monograph 1 (1999), 67-85.
- [14] W. Takahashi, Nonlinear Functional Analysis : Fixed point theory and its applications, Yokohama Publishers, 2000.
- [15] J. S. Ume, B. S. Lee and S. J. Cho, Same results on fixed point theorems for multi-valued mappings in complete metric spaces, IJMMS 30 (2002), 319-325.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0047-0014