Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
MV-algebras were introduced by Chang as an algebraic counterpart of the Łukasiewicz infinite-valued logie. D. Mundici proved that the category of MV-algebras is equivalent to the category of abelian l-groups with strong unit. A. Di Nola and A. Lettieri established a categorical equivalence between the category of perfect MV-algebras and the category of abelian l-groups. In this paper we investigate the convergence with a fixed regulator in perfect MV-algebras using Di Nola-Lettieri functors. The main result of the paper states that every locally Archimedean MV-algebra has a unique v-Cauchy completion.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Department of Mathematics Polytechnical University of Bucharest Splaiul Independentei 313 Bucharest, Romania, lavinia_ciungu@math.pub.ro
Bibliografia
- [1] R. N. Ball, The structure of α-completion of lattice ordered groups, Houston J. Math. 15 (1989), 481-515.
- [2] R. N. Ball, G. Georgescu, I. Leuştean, Cauchy completion of MV-algebras, Algebra Universalis 47(2002) 367-407.
- [3] L. P. Belluce, A. Di Nola, Yosida type representation for perfect MV-algebras, Math. Logic Quart. 42 (1996), 551-563.
- [4] S. Černák. J. Lihová, Convergence with a regulator in lattice ordered groups, Tatra Mt. Math. Publ. 30 (2005), 35-45.
- [5] S. Černák. Convergence with a fixed regulator in Archime.dean lattice ordered groups, Math. Slovaca 2 (2006), 167-180.
- [6] S. Černák. Convergence with a fixed regulator in MV-algebras, submitteed.
- [7] C. C. Chang, Algebraic analysis of many-valued logic, Tirans. Amer. Math. Soc. 88 (1958), 467-490.
- [8] R. Cignoli, I. M. L. D'Ottaviano. D. Mundici, Algebraic Foundation of Manyvalued Reasoning, Dordrecht, Kluwer Academic Publishers. 2000.
- [9] A. Di Nola, Algebraic analysis of Łukasiewicz logic, ESSLLI, Summer school, Utrecht, August, 1999.
- [10] A. Di Nola. A, Letieri. Perfect MV-algebras are categoricaly equivalent to abelian (-groups, Studia. Logira. 53 (1994), 417-432.
- [11] G. Georgescu, 1. Leu§tean, Convergence in perfect MV-algebras, J. Math. Anal. Appl. 228 (1) (1998), 96-111.
- [12] G. Georgesiu, F. Liguori, G. Martini. Convergence in MV-algebras, Soft. Computing 5 (1997), 41-52.
- [13] I. Leuştean, a-convergence and complete distribuiimty in MV-algebras, J. Mult. Valued Logic Soft Comput., to appear.
- [14] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz calculus, J. Funct. Anal. 05 (1986), 15-63.
- [15] F. Papangelou, Same consulerations on conyergence in abelian lattice-groups. Pacific ,). Math. 15 (1965), 1347-1364.
- [16] F. Papangelou, Order convergence and topological completion of commutative laitice-groups, Math. Ann. 155 (1964), 81-107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0047-0001