PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classes of functions related to the generalized hypergeometric function

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we Investigate a class of p-valent analytic functions with fixed argument of coefficient, which is defined in terms of generalized hypergeometric function. Using techniques due to Dziok and Srivastava [4] (see also [1]) we investigate coefficient estimates, distortion theorems, the radii of convexity and starlikeness in this class.
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Institute of Mathematics, University of Rzeszów, Rzeszów, Poland
Bibliografia
  • [1] J. Dziok, Classes of functions defined by certain differential-integral operator, J. of Comp. and Appl. Math. 105(1999), 245-255.
  • [2] J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric Junction, Integra! Transform. Spec. Funct. 14(2003), 7-18.
  • [3] -, -, Classes of analytic functions associated with the generalized hypergeometric Junction, Appl. Math. Comput. 103, 1-13, 1999.
  • [4] -, -, Some subclasses of analytic functions with fixed argument of coefficients functions associated with the generalized hypergeometric Junction, Advanced Studies in Contemporary Mathematics, 5(2002), No.2, 115-125.
  • [5] J. S. Ratti, The radius of uni11alence of certain analytic functions, Math. Zeitschr. 107(1968), 241-248.
  • [6] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math Soc. 49(1975), 109-115.
  • [7] H. M. Srivastava and S. O w a, Some characterization and distortion theorems in11oluing fractional calculus, generalized hypergeometric functions, Hadamard prod¬ucts, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106(1987), 1-28.
  • [8] H. M. Srivastava and S. O w a (Editors), Unillalent Functions, Practional Cal¬culus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
  • [9] -, -, Current Topics in Analytic F'Unction Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
  • [10] J. Stankiewicz, Some Extremal Methods in the Theory of Unillalent F'Unctions, Towarzystwo Naukowe, Rzeszów, 1986.
  • [11] J. Stankiewicz, Z. Stankiewicz, Conllolutions of some classes of functions, Folia Sci. Univ. Techn. Resoviensis, 7(1988), 93-101.
  • [12] J. Stankiewicz, J. Waniurski, Some classes of uniualent func¬tions subordinate to linear transformation and their applications, Ann. Univ. Mariae Curie-Skłodowska, 9(1974), 85-94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0044-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.