Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we show that the Alexander integral operator I : A approaches A, f(z) = IF(z) = integral of, between limits z and 0 F(t)/t dt preserve the so called Magda§-Ruscheweyh uniform convex functions.
Rocznik
Tom
Strony
5--9
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Department of Mathematics, Lucian Blaga University Sibiu, Romania
autor
- Department of Mathematics, Lucian Blaga University Sibiu, Romania
Bibliografia
- [1] A. W. Goodman, On uniformly convex function, Ann. Polon. Math., LVIII (1991), 86-92.
- [2] L. Madgaş, Doctoral thesis, University “Babeş-Bolyai” Cluj-Napoca 1999.
- [3] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Mirch. Math. 28(1981), 157-171.
- [4] -, -, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56(1985), 297-308.
- [5] -, -, On some classes of first-order differential subordination, Mirch. Math. 32(1985), 185-195.
- [6] F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ, Mariae Curie-Skłodowska, Sect. A, 45(14), 1991, 117-122.
- [7] S. Ruscheweyh, New criterion for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0044-0024