PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Certain classes and inequalities and their applications to multivalently analytic functions

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using fractional calculus introduced by S. Owa we define two classes of analytic functions. Some sufficient conditions for functions to belong to these classes are given. Moreover consequences of main results are also pointed out.
Rocznik
Strony
55--62
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Department of Mathematics, Technical University of Rzeszów
autor
  • Department of Mathematics Akdemic University
Bibliografia
  • [1] M. P. Chen, H. Irmak, H. M. Srivastava, Some families multivalently analytic functions with negative coefficients, J. Math. Anal. Appl., 214(1997), 674-690.
  • [2] J. Dziok, Classes of analytic functions involving some integrol operator, Folia Sci. Univ. Techn. Resoviensis, 20(1995),21-39.
  • [3] -, Classes of p-valent analytic functions with fixed argument of coefficients, Demonstratio Math., 33(2000), 55-63.
  • [4] -, H. M. Srivastava, Classes of analytic functions associated with the generalized·hypergeometric Junction, Appl. Math. Comput., 103(1999), 1-13.
  • [5] H. Irmak, O. F. Cetin, Some theorems involving inequalities on p-valent functions, Turkish J. Math., 23(997), 453-459.
  • [6] -, -, Some inequalities on p-valently starlike and p-valently convex functions, Hacettepe Bull. Natur. Sci. Engrg. Ser. B, 28(1999), 71-76.
  • [7] I. S. Jack, Pu.nctions starlike and convex of order a, J. London Math. Soc., 3(1971), 469-474.
  • [8] S. S. Miller , P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
  • [9] S. Owa, On the distortion theorems. I, Kyungpook Math. J., 18(1978), 53-59.
  • [10] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku, 4(1941), 45-86.
  • [11] J. A. Pfaltzgraff, M. O. Reade, T. Umezawa, Sufficient conditions for univalence, Ann. Fac. Sci. Kinshasa, Zaire; Section Math. Phys., 2(1976), 94-101.
  • [12] H. M. Srivastava, S. Owa, An application of the fractional derivative, Math. Japon., 29(1984), 383-389.
  • [13] H. M. Srivastava and S. Owa (Editors), Univalent Punctions, Practional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0043-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.